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Digital Signal Processing (EEE-0714-3107)

3 Credit Course

Class: 17 weeks (2 classes per week)

Total Class Duration: 1 hrs.
Total=34 Hours

Preparation Leave (PL): 02 weeks
Exam: 04 weeks
Results: 02 weeks
Total: 25 Weeks
Attendance:

Students with more than or equal to 70% attendance in this course
will be eligible to sit for the Semester End Examination (SEE). SEE
1s mandatory for all students.
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Altogether 4 quizzes may be taken
during the semester, 2 quizzes will be
taken for midterm and 2 quizzes will

" be taken for final term.

Altogether 2 assignments may be
taken during the semester, 1
assignments will be taken for
midterm and 1 assignments will be

" taken for final term.

The students will have to form a
group of maximum 3 members.
The topic of the presentation will
be given to each group and students
will have to do the group
presentation on the given topic.

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




4 ASSESSMENT PATTERN N

SEE- Semester End
Examination (60 Marks)

CIE- Continuous Internal Evaluation (90 Marks)

Bloom’s Tests  Quiz External Bloom’s Tests
Category 45 @15 Participation in Category
Marks Curricular/Co- Remember 10
Curricular
Activities (15) Understand 10
Remember 10 09 | Bloom’s Affective Apply 15
Understand 8 06 Dom?ll;l: (Attitude Analyze 10
or wi
Apply 10 Attendance: 15 Evaluate 10
Analyze 5 Viva-Voca: 5 Create 5
Assignment: 5
Evaluate ! Presentation: 5
Create 5
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" COURSE LEARNING OUTCOME (CLO)

Course learning outcomes (CLO): After successful completion of the
course students will be able to -

Understand the fundamentals of digital
signal processing, including signal and
system concepts, classification, and
analog-to-digital conversion techniques.

Analyze different types of signals, their
CLO-2 representations, and key properties such as
energy, power, and manipulations.

Apply mathematical tools like
convolution, Z-transform, and frequency-
domain analysis to solve signal processing
problems.

CLO-3

Design and implement digital filters (FIR
CLO-4 and IIR) and apply advanced techniques
like FFT for practical DSP applications.
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SYNOPSIS / RATIONALE

Digital Signal Processing (DSP) 1s a critical field in electrical
engineering, focusing on the manipulation and analysis of signals
using digital techniques. This course provides students with a
fundamental understanding of signal processing algorithms,
methods, and applications. In an increasingly digital world, DSP
plays a vital role 1in various domains such as telecommunications,
audio processing, image processing, and biomedical engineering.
By mastering DSP principles and techniques, students gain the
skills necessary to design, implement, and optimize digital signal
processing systems, contributing to advancements in technology
and innovation across industries.
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Course Objective

Understand fundamental concepts and principles of digital signal
processing.

Analyze and interpret signals in time and frequency domains.

Design and implement digital filters for signal processing applications.
Apply Fourier analysis and Z-transform techniques to analyze signals.
Design FIR & IIR Digital Filters & analyze.

Prepared By- Noor Md Shabhriar, 3
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COURSE OUTLINE

Introduction to DSP: Signals, systems and signal
processing, Basic Elements of DSP, Advantages and
Disadvantages of DSP, Application of DSP, Types of
Signal, A/D Conversion, Problems

CLOl,
CLO2

Discrete Time Signals & Systems: Representation
of discrete time signals, Some elementary discrete
time signals, Classification of discrete time (DT)
signals, Manipulation of DT signals, Classification
of Discrete Time System, Convolution sum,
Correlation

CLO2,
CLO3

Analysis of DT Linear Time-Invariant System
Sampling theorem, aliasing, quantization error,
Nyquist rate problems.

CLO2,
CLO3
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COURSE OUTLINE

5 |Z-Transform: Z-transform, Physical significance of CLO3,
z-transform, Region of convergence (ROC), Z- CLO4
transform of some basic causal and anti-causal
signals, Properties of z-transform, Pole-zero Plot,

Inverse z-transform

6 |Frequency Analysis: FIR System, structures for CLO4,
FIR System, Direct form realization, Examples CLO5
related to FIR system implementation, IIR system,

Structures for FIR System, Direct form structures of
IIR system, DFT, DTFT, FFT algorithms, Circular
Convolution

7 |Digital Filters: Filter kernel, classification, FIR and CLO4,

IIR design, kernel conversion, spectral inversion. CLOS5

©
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COURSE SCHEDULE
Teaching .
Wee . . Assessment | Corresponding
k Topic Learning Strategy CLOs
Strategy
1 Introduction to Digital Signal - Lecture, Class CLO1
Processing (DSP): Definition of | multimedia participation,
Signal, System, Basic Block presentation. Group
Diagram, Advantages, Limitations Discussion,
& Applications of DSP Q&A.
2 Signal Classification & Analog- |- Interactive Group CLO1, CLO2
to-Digital Conversion: Types of | lecture; Discussion
signals, steps to convert Analog to | problem- Q&A.
Digital signals. solving session.
3 Sampling Theorem and - Example Group CLO2, CLO3
Quantization: Alias frequency, problems and | Discussion
quantization error, SQNR; Nyquist | graphical Q&A.
rate problems. representation.
4 Representation Methods of - Class Class Test-1 CLO2
Signals: Various representation examples,
methods, elementary signals. signal sketching
EXErcises.
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COURSE SCHEDULE
Wee Topic Teaching Assessment | Corresponding
k Learning Strategy Strategy CLOs
5 Energy and Power of Signals: |- Lecture and - Problem- CLO2,CLO3
Determining energy, power, and | guided practice; solving exercise.
signal classification. worked examples.
6 Signal Manipulation: Basic - Practical - In-class CLO2,CLO 3
operations like shifting, scaling, | demonstrations problems on
and folding of signals. and group signal
exercises. operations.
7 Discrete Systems: Block - Diagrammatic Problem-solving | CLO 1, CLO 4
diagram representation, system | explanations; exercise, Q&A,
classification (linear/nonlinear, | group discussions. | Class
causal/noncausal). Participation
8 Linear Convolution and - Hands-on Class Test-2 CLO3
Correlation: Cross-correlation, |practice with
auto-correlation. numerical
problems.
9 Introduction to Z-Transform: |- Lecture and Assignment-1 CLO3,CLO4
Significance, ROC, and basic practice session on
concepts. Z-transform.
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COURSE SCHEDULE
Wee Topic Teaching Assessment | Corresponding
k Learning Strategy Strategy CLOs
10 | Properties & Inverse Z- - Problem-solving |- Homework on | CLO 3, CLO 4
Transform: Key properties and | exercises. inverse Z-
methods for inverse Z- transform.
transform.
11 | FIR and IIR Systems: - Lecture, block - Lab CLO4
Structure and implementation | diagram examples. | assignment on
basics. FIR and IIR
systems.
12 | DFT, DTFT, and Circular - Case studies and |- Quiz on CLO 3,CLO4
Convolution: Understanding numerical frequency-
frequency domain analysis. problems. domain
transformations.
13 | Radix-2 FFT Algorithm: 8- - Simulation using |- Lab CLO4,CLO 5
point DIT-FFT butterfly MATLAB; assignment on
algorithm. example FFT
calculations. implementation.
14 | Digital Filters: Advantages, - Interactive - Short essay on |CLO 4, CLO 5
disadvantages, applications, lecture with real- | filter
classification, filter kernel. life examples. applications.
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COURSE SCHEDULE
. Teaching Learnin Assessment | Correspondin
Week Topic Str%ltegy ° Strategy CLOs °
15 Filter Kernel Conversion: - Demonstrations | Class Test-3 CLO4
Spectral inversion. and exercises.
16 FIR Filter Design: Design - Design session - Lab-based FIR | CLO 5
techniques and practical with tools like filter design
considerations. MATLAB. task.
17 IIR Filter Design: Analysis, |- Lecture, software- | Assignment-2 |CLO 5
design methods, and based design
simulation. (MATLAB or
Python).
18 Course Review and Final - Revision and - Summative CLO 1-5
Examination problem-solving assessment
workshop. (written exam).

©
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REFERENCE BOOK

Digital Signhal
Processing

A Practical Approach

Digital Signal Processing -

Emmanuel C. Ifeachor,

Emmanuel BaI'I'ie W. JerViS
Barrie W. |8

V

Digital Signal
Processing

-4 Digital Signal Processing
(4th Edition), John G,
Proakis, Dimitris K

" Manolakis

Video Lecture Playlist
https://youtube.com/playlist?list=PLuh62Q4S
v/BUSzx5Jr8Wrxxn-

U10g9G1et&si=F TyOrlueWRQIWQY/]
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Bloom Taxonomy Cognitive Domain Action Verbs

Remembering Choose ¢ Define ® Find ® How e Label ¢ List « Match ¢« Name ¢ Omit e Recall » Relate ¢ Select ¢
(C1) Show e Spell e Tell ¢ What ¢« When ¢ Where ¢ Which ¢ Who e Why

Understanding Classify ® Compare ¢ Contrast ® Demonstrate ® Explain ¢ Extend e lllustrate ¢ Infer e Interpret o
(C2) Outline » Relate ® Rephrase ® Show ¢ Summarize ® Translate

Apply ® Build ¢ Choose ® Construct ® Develop ¢ Experiment with e Identify e Interview ¢ Make

Applying (C3
pplying (C3) use of ® Model » Organize ® Plan e Select ¢ Solve ¢ Utilize

Analyze e Assume ¢ Categorize ® Classify ® Compare ¢ Conclusion e Contrast ® Discover ¢ Dissect
Analyzing (C4) e Distinguish ® Divide ® Examine ® Function e Inference e Inspect ® List ® Motive ¢ Relationships e
Simplify e Survey ¢ Take part in ® Test for e Theme

Agree o Appraise ® Assess ® Award ® Choose ¢ Compare ® Conclude e Criteria e Criticize ® Decide
e Deduct ¢ Defend ¢ Determine e Disprove e Estimate ¢ Evaluate e Explain e Importance e
Influence e Interpret ¢ Judge e Justify ® Mark ¢ Measure ¢ Opinion ¢ Perceive ¢ Prioritize ® Prove
e Rate ® Recommend ¢ Rule on e Select ¢ Support ¢ Value

Evaluating (C5)

Adapt e Build ® Change ® Choose ® Combine ¢ Compile ® Compose ¢ Construct e Create ® Delete
Creating (C6) e Design ® Develop ¢ Discuss ¢ Elaborate ¢ Estimate ® Formulate ® Happen ¢ Imagine ¢ Improve e
Invent ¢ Make up ® Maximize ¢ Minimize ® Modify e Original ¢ Originate ¢ Plan ¢ Predict e
Propose e Solution e Solve ® Suppose e Test ® Theory
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University of Global Village (UGYV), Barishal
Dept. of Electrical and Electronic Engineering (EEE)

Segment-1

Introduction of Digital Signal Processing

Course Code: EEE-0714-3103
Course Title: Digital Signal Processing

Prepared By

Noor Md Shahriar
Senior Lecturer, Dept. of EEE, UGV
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Week 1
Slide 16-23
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Contents

v' Signals, systems and signal processing.
v" Basic Elements of DSP.

v Advantages and Disadvantages of DSP.
v Application of DSP.

v Types of Signal.

v" A/D Conversion.

v" Problems
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Signals, Systems and Signal Processing

A signal 1s defined as a function representing any physical quantity that varies with time,
space or any other independent variable or variables. It contains information about the
behavior or nature of the phenomenon. Mathematically, we describe a signal as a function of

one or more independent variables. For example,

S1(t) =5t
S(xy) =3x + 2xy + 5y2

v" Speech, electrocardiogram and electroencephalogram signals are examples of

bearing signals that evolve as function of a single independent variable.

v' Two dimensional signal An example of a signal that is a function of two
independent variable is an image signal.

v" A video signal is function of three independent variables.

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /
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Signals, Systems and Signal Processing (Cont.)

System

A system may be defined as a physical device that performs an operation on a signal.
System is a mathematical model of a Physical process that relates the input (Excitation) to the
Output (Response). For example, a filter used to reduce the noise and interference

corrupting a desired information bearing signal is a system.

Signal Processing

When we pass a signal through a system, we say that we have processed the signal.

Input Processed Signal
Signal / Output Signal/
Excitation Response
Signal
Processing

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




/ Basic Elements of a DSP System \

x(7)

Analog _
rj r] Electronics H r| rj r]
Electrical A
_ _ . _ _ Electrical _ .
Physical Electrical C-T Electrical Electrical D-T Electrical C-T
C-T C-T System C-T D-T System D-T Signal
Signal Signal Signal Signal Signal

A/D Converter: Digital Signal Processing provides an alternative method for processing the
analog signal. To perform the processing digitally, there is a need for an interface between the analog

signal and the digital processor.This interface is called analog—to—digital (A/D) converter,

DSP: The digital signal processor may be a large programmable digital computer or a small

microprocessor programmed to perform the desired operation in the input Signal.

D/A Converter: The digital output from the digital signal processor is to be given to the user in

analog form.This is done by another interface called a digital—to—analog(D/ A) converter.

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




4 A

l)DSP Systems are reconfigurable: A digital programmable system allows ﬂexibility in

Advantages of Digital over Analog Signal Processing

configuring the digital signal processing operations simply by changing the program.
Reconfiguration of an analog system usually a redesign of hardware followed by testing and
verification to see that it operates properly.

2)Accuracy Consideration: Tolerances in analog circuit components make it extreme
difficult for the system designer to control the accuracy of an analog signal processing system.
On the other hand, a digital system provides much better control of accuracy requirements.
3)Storing Data: Digital signals are easily stored on magnetic media (tape or disk) without de-
terioration or loss of signal fidelity beyond that introduce in the A/D conversion. As a
consequence, the signals become transportable and can be processed off-line in a remote

laboratory.

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




4 A

Advantages of Digital over Analog Signal Processing (Cont.)

4)Signal Processing Algorithm: The digital signal processing method also allows for the
implementation of more sophisticated signal processing algorithms. It is usually very difficult to
perform precise mathematical operations on a signal in analog form, but these same operations
can be routinely implemented on a digital computer using software.

5)Cost: In some cases a digital implementation of the signal processing system is cheaper than its
analog counterpart.

6)Effect of Noise: Digital Signal can convey information with greater noise immunity.
7)Electromagnetic interference: There is minimum electromagnetic interference in digital
technology.

8)Security & bandwidth : It is more secure and higher rate transmission with wider bandwidth.

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /
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Disadvantages of Digital Signal Processing

1. Speed of operation: One practical limitation is the speed of operation of A/D
converters and digital signal processors. We shall see that signals having extremely wide band
widths require fast-sampling rate A /D converters and fast digital signal processors. Hence there
are analog signals with large bandwidths for which a digital processing approach is beyond the
state of the art of digital hardware.

2. Reconstruction: The process of reconstructing analog signal from the digital signal is very
difficult.

3. Expensive for small applications.

4. Finite precision effect.

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




—> Space

—> Medical

DSP —

> (Commercial

—> Telephone

—> Military

—> Industrial

—> Scientific
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Application of DSP

-Space photograph enhancement

-Data compression

-Intelligent sensory analysis by
remote space probes

-Diagnostic imaging (CT. MRI,
ultrasound. and others)

-Electrocardiogram analysis

-Medical image storage/retrieval

-Image and sound compression
for multimedia presentation

-Movie special effects

-Video conference calling

-Voice and data compression
-Echo reduction

-Signal multiplexing
-Filtering

-Radar

-Sonar

-Ordnance guidance
-Secure communication

-Oil and mineral prospecting
-Process monitoring & control
-Nondestructive testing

-CAD and design tools

-Earthquake recording & analysis
-Data acquisition

-Spectral analysis

-Simulation and modeling

pr
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INNOVATIONS IN
SIGNAL PROGESSING

MYDELECTRIC

©

Current Research Trends in DSP
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ENHANGED BIOMEDICAL SIGHAL HUMAN
SECURITY PROCESSING LOGOMOTION

PR A
GRS

HUMAN CENTRIC ~ MULTI-DISGIPLINARY EEG AND
APPROACH METHODOLOGIES BCI SIGNALS

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




28

Week 2
Slide 25-30
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/ Classification of Signals: Multichannel and Multidimensional

Multichannel Signal

™

In some application, signals are generated by multiple source or multiple sensors. Such signals, in

turn, can be represented in vector form.We refer to such a vector of signals as a multichannel signal.

In electrocardiogram, for example, 3-lead and 12-electrocardiogram (ECG) are often used in practice

which result in a 3 channel and 12 channel signals.

Multidimensional Signal

If the signal is a function of a single independent variable, the signal is called a one dimensional signal.

On the other hand, a signal is called M-dimensional if its value is a function of M independent variable.

Black and white picture is an example of a two-dimensional signal, since the intensity or brightness

I(x,y) at each point is a function of two independent variables.
Black and white TV picture me be treated as a three-dimensional signal.

Color TV picture is a three-channel and three-dimensional signal.

I(x,y,t)
I(x,y, t) == Ig(x) y) t)
Ip(x,y,t)

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




@lassiﬁcation of Signals: ContinuousTime and Discrete Time Signal \

Continuous Time Signal

Continuous signals or analog signals are defined for every value of time and they take on values in the

continuous interval (a,b), where a can be —00 and b can be +00

t
Examples: X1(t) = cos(mt) x(t)

a
x2(t) = eIt wheret = -0 <t <o /7

T r

Discrete time signals are defined only at certain specific values of time. These time instants need not be

Discrete time Signal

equidistant, but in practice they are usually taken at equally spaced intervals.

Examples .
x[n]

0.8%, n=0
nm= 4 otherwise l 11 l l

n is integer number.
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f Classification of Signals: Continuous Valued and Discrete Valued \

The values of a continuous time or discrete time signal can be continuous or discrete.

Continuous Valued Signal: If a signal takes on all possible values on a finite or an infinite range, it is

said to be a continuous valued signal.

Discrete Valued Signal: Alternatively, if the signal takes on values from a finite set of possible
values, it is said to be discrete-valued signal.

Digital Signal: A discrete time signal having a set of discrete values is called a digital signal. In order
for a signal to be processed digitally, it must be discrete in time and its values must be discrete (i.e. it

must be digital signal)

x[t]

" boon 11
6 TR Rl
5|
iy ok B AR S S
3- - L. -~ S R -
2 B N R R (| M - -
l-- ahede s ak=

=
0 6 7 8 010111213+
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f Classification of Signals: Deterministic and Random Signal \

Deterministic (Predictable/Wanted) Signal : Any signal that can be uniquely described by
an explicit mathematical expression, a table of data or a well defined rule is called deterministic. This
term is used to emphasize the fact that all past, present and future values of the signal are
known precisely without any uncertainty.

Random Signal (Unpredictable/ unwanted/ noise): In many practical application the signals
can not be described to any reasonable degree of accuracy by explicit mathematical formulas, or such
description is too complicated to be any practical use.

The lack of such a relationship implies that such signals evolve in time is an unpredictable manners. We

refer to these signals as random.

The o/p of noise generation, the speech signal are example of random signals.
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/ Analog to digital Conversion

A/D converter
x,(f) ! x{n x,(n E 01011
“L() —={  Sampler w Quantizer & Coder —
1 S S )
Analog Discrete-time Quantized Digital
signal signal signal signal

Sampling : This is the conversion o f a continuous-time signal into a discrete time signal obtained by

taking “ samples’" of the continuous-time signal at discrete-time instants. Thus, if X4(t) is the input

to the sampler, the output is X, (nT) =X m), whereT is called the sampling interval.
Quantization : This is the conversion o f a discrete-time continuous-valued signal x(7)in to a
discrete-time, discrete-valued (digital) signal X4(7). The value of each signal sample is represented

by a value selected from a finite set o f possible values.

Coding: In the coding process, each discrete value X4(n) is represented by a b-bit binary sequence.
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Sampling of Analog Signals

Periodic or uniform sampling is described by the relation- X (M) = Xq (TLT), —0<<nN<o

where x(n) is the discrete-time signal obtained by “ taking samples” of the analog signal x,(t) at

every T seconds. The time interval T between successive samples is called the sampling period or

sample interval and its reciprocal L= F. is called the sampling rate (samples per second) or the

sampling frequency (hertz).

Analog X, (1) N m x(n) = x,(nl) ~ Discrete-time
Signal - ‘Fs = 1/T Slgl’lﬁ.l
Samplet
¥, {f) x(#1) . Xq(1)
, ﬁ’\/ —
P x(n) = x,(nT)
- — 1] l l [Tt
0 f 0| 1234567829 n
r2r .. 5r ... 9T  t=nT
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Week 3
Slide 32-45
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Sampling of Analog Signals (Cont.)

Periodic sampling establishes a relationship between the time variables t and n of continuous-time and

discrete-time signals.

If the analog signal x,(t) = A cos(2a Ft + 6)
Sampled periodically at a rate Fg = 1+ the digital signal can be expressed as

x(nT) =x(n) = AcosQ2rn FnT + 6)

2ankF
= A g
cos( I3 + )

5

From above relationship between the frequency variable F (or {1) for analog signals and the frequency

variable f (or w) for discrete-time signals.

. Fg'

The frequency variable f of discrete signal is sometimes called Relative normalized frequency

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV
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Consider two sinusoidal analog Signals: ~ *1 (1) = cos 27 (10)¢

x2(1) = cos 27 (50)¢t

Alias of Frequency

If they are sampled at a rate Fg = 40 Hz,The corresponding discrete time signal will be:

10 T
xi(n) =cos2m { — | n =cos —n

40 2
50 5w
x(n) = cos 2w (Zﬁ) n = COS —E—n

However, cosdnn/2 = cosan + nwn/2) = cosan/2. Hence x3(n) = x1(n)
Thus the sinusoidal signals are identical and consequently, indistinguishable.

Since x2(t) yields exactly the same values as X1(t) when the two are sampled at Fs = 40
samples per second, we say that the frequency Fp = 50 HZz is an alias of the frequency
F1 = 10 Hz at the sampling rate of 40 samples per second.

It is important to note that F5 is not only the alias of F'1. In fact at the sampling rate of 40 samples
per second, the frequency F3 = 90 Hz, F4 = 130 Hz ..... So on are also an alias of F.

In general, all of the sinusoids cos 2w (F1 + 40K)t, k = 1,2,3 ...., sampled at 40 samples per
second are the aliases of F1 = 10 Hz.
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/ Alias of Frequency (What should be the sampling Rate?
q Y ping

(-

Sampling condition is satisfied

i t i i i L i i L
0 0.01 002 003 004 005 006 0.07 0.08 009 0.1

Time (sec.)

Sampling condition is not satisfied

1
i
y

0 001 002 003 004 005 006 007 008 009 O.1

Time (sec.)
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Example 1.4.2 (Proakis)

Consider the analog signal

x,(t) = 3cos 100w«

(a) Determine the minimum sampling rate required to avoid aliasing.

(b) Suppose that the signal is sampled at the rate F; = 200 Hz. What is the discrete-time
signal obtained after sampling?

(¢) Suppose that the signal is sampled at the rate F, = 75 Hz. What is the discrete-time
signal obtained after sampling?

(d) What is the frequency 0 < F < F;/2 of a sinusoid that yields samples identical to those
obtained in part (¢)?

Solution.

(a) The frequency of the analog signal is F = 50 Hz. Hence the minimum sampling rate
required to avoid aliasing is F, = 100 Hz.

(b) If the signal is sampled at F; = 200 Hz, the discrete-time signat is

)= 3cos 20 _ 3cos Ta
x(n)=3co 200?1_ 7"

(c¢) Tf the signal is sampled at F, = 75 Hz, the discrete-time signal is

x(n} = 3cos 75

o

3

2 27
Dﬂn:Bms 4—jrn = 3 cos (Z:Ir——x)n = 3 cos -?’—n

3
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/Example 1.4.2 (Proakis)- Cont.

(d) For the sampling rate of F; =75 Hz, we have
F=fF =75f
“The frequency of the sinusoid in part (¢c) is f = §. Hence
F =725 Hz
Clearly, the sinusoidal signal
va(t) = 3cos2m F't
= 3cos50nt

sampled at F;, = 75 samples/s yields identical samples. Hence F = 50 Hz is an ahas of
F =25 Hz for the sampling rate F, =75 Hz.
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4 A

If the highest frequency contained in an analog signal Xq(t) is Finax = B and the signal is sampled at
arate Fg > 2F ;00 = 2B. then x4(t) can be exactly recovered from it sample values using the

Sampling Theorem

interpolation function

o sin2m Bt
= T B
o0
1 I
Xq(t) may be expressed as Xg (f) = Z Xg |\ — 18V — —
< ks Fy
n=—00
Where X, (Fi) = xq(nT) = x(n) are the samples of x4(t) l
- x, (1) sample of x,(2)

"'k-,./
-

The minimum sampling rate of a signal to

________
bl Y

recover it from its sample value is

Nyquist rate.

(n—2)T (n- 1T nT (n+ I
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4 Quantization of Continuous-Amplitude Signal N

Quantization: The process of converting a discrete-time continuous-amplitude signal into a digital
signal by expressing each sample value as a finite (instead of an infinite) number of digits is called
quantization.

Quantization error: The error introduced in representing the continuous-valued signal by a finite
set of discrete value levels is called quantization error or quantization noise.

The quantization error is a sequence €4(1) defined as the difference between the quantized value
(xg (M) = Q[x(n)]) and the actual sample value-

eq(n) = x4(n) — x(n)
Resolution: The values allowed in the digital signal are called the quantization levels, whereas the

distance A between two successive quantization levels is called the quantization step size or resolution.

The quantization error eq (n) in round ing is limited to the range of — A oto+4 5, thatis,

A <e ()< A In other words, the instantaneous quantization error cannot exceed
27 4 ) half of the quantization step.
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/ Quantization of Continuous-Amplitude Signal (Cont.) \

It x,;, and x_,. represent the [lustrating the quantization process for the function:
minimum and maximum value of x(n)
L
and L is the number of quantization x(n) = 09", n=>0
0, n<0
levels, then
1.0 4
_ Xmax — Xmin () = 0.9
L —1 0.8 -
/_1,,{.!} =09
Xmax — Xmin is known as the dynamic 6
range of signal 0.4
0.2-
For the example in Fig, e
_ _ _ 0 1 2 3 4 5 f 7 8 n
Xmax_l and xmln — O,L — 11 | T e
SO, A= 01 T=1szec
(a)
. . . . a0 =059
Note that if the dynamic range is fixed, / Xgl)

I 1.0 —~ — Levels of
in creasing the number of quantization gg 7 / quantization
levels, L results in a decrease o f the 07 1.___"'/ i

. ) R: f 06 - Quantization
quantization step size. Thus the o Ee e 0.5 —s\ﬁ. A gep
. . anti ‘h—_—h-——;
quantization error decreases and the T g‘; 1
accuracy o f the quantizer increases. I 02
01
T I 2 3 4 S5 6 7 8 n

(b)
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Quantization of Sinusoidal Signal

Amplitude
Time Discretization
Discretization o
\ Quantization
Level
! L | N 7 /
Original Analog Signal /
4A xf) i /
3 ,Unqua'ntized Samples / ) 1
24 [ Xolnt) / A Quantization
/ | _ Step
[5] . 1
! A Quantized Output of Zero-Order
2 0 Samples ~ Hold D/A Converter
-E‘. ) Xg(0) Range of the
A / Quantizer
—2A
—3A
L 4
—4A

0 7 2T 3r 4F 5T 67 i 294 af
Time

The analog sinusoidal signal, x4 (t) = A cos Qot

The discrete sinusoidal signal, Xx(n) = x4(nT)
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4 Quantization of Sinusoidal Signal (Cont.)

} P | e,(1)

A2
_____ a2 Ap————————
: /I— ! i /!

| -A2 ———-—170 ©

The quantization error e, (t) = xq(f) — x4 (1),

1 (" 1
Py = _Ieé‘(r) d::EfO es(t) di

Since e, (t) = (A/21), —7 <1 < v, w¢ have

P —1fT(A)ztzdr—A2
T o Jo \ 2t 12

Here, Xmin = —A and X0 = A, If the quantizer has b bit accuracy, A= d+d _ 24
2b 2b
» A%/3
g 22@
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4 Quantization of Sinusoidal Signal (Cont.)
The average power of the signal x,(7) 1s
1 Ip Az
Po=— | (AcosQut)’ dt = —
Tp 0 2
The quality of the output of the A/D converter is usually measured by the signal-to-
quantization noise ratio (SQNR), which provides the ratio of the signal power to the
noise power:

P,

q
Expressed in decibels (dB), the SONR is

_ SQNR{dB) =10 lﬂgm SQNR =1.76 + 6.02b

- 92b

(G IRUE I

This implies that the SQNR increases approximately 6 dB for every bit added to the word length , that

is. for each doubling of the quantization levels. Although this formula was derived for sinusoidal

signals, but similar result holds for every signal whose dynamic range spans the range of the quantizer.

This relationship is extremely important because it dictates the number of bits required by a specific

application to assure a given signal-to noise ratio. For example, most compact disc players use a

sampling frequency of 44.1 kHz and 16-bit sample resolution , which implies a SQNR of more than
96 dB.

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




fExample 1.4.4 (Proakis)

Consider the analog signal

xg (1) = 3¢co0s 2000t + Ssin60007¢ + 10 cos 12,0007 ¢

(a) Whatis the Nyquist rate for this signal?

(b) Assume now that we sample this signal using a sampling rate F; = 5000 samples/s. What
18 the discrete-time signal obtained after sampling?

(¢) What is the analog signal v,(r) that we can reconstruct from the samples if we use ideal
interpolation?

Solution.
(a) The frequencies existing in the analog signal are

1 =1 kHz, > =3 kHz, 5 =6kHz
Thus F.x = 6 kHz, and according to the sampling theorem,
F{" = ZFmax -_ ].2 kHE

The Nyquist rate 1s
Fy =12 kHz
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fExample 1.4.4 (Proakis)- Cont.

(b) Since we have chosen F;, =5 kHz, the folding frequency is

F,
— =2 5kHz
2

and this is the maximum frequency that can be represented uniquely by the sampled
signal. By making use of (1.4.2) we obtain

i

x(n) = x,(nT) = x, (E)

—=3cos2r (3)n +5sin2x (2)n + L0cos2x (&) n
=3cos2r (3)n+5sin2x (1 — 2)n+10cos2x (14 3)n
=3cos2r (1) n+5sin2x (—%)n+10cos2x (1) n

x(n) =13cos2r (3)n — 5sin2x (3)n

Since, Fs = 5 KHz, the folding frequency is Fg/2 = 2.5 KHZz.This is the maximum frequency that
can be represented uniquely by the sampled signal. The frequency F1 is less than Fs/2 and thus is not
affected by aliasing. However the other two frequencies are below the folding frequency and they will

be changed by the aliasing effect.
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/Example 1.4.4 (Proakis)- Cont. \

(¢) Since the frequency components at only 1 kHz and 2 kHz are present in the sampled
signal, the analog signal we can recover is

va(r) = 13¢cos 2000m 1 — 5sin 400071

which is obviously different from the original signal x,(#). This distortion of the original
analog signal was caused by the aliasing effect, due to the low sampling rate used.

kdk

Solve the exercise problems related to the topics discussed in the
lecture.
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a
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a

1. Graphical Representation

Representation of Discrete-Time Signals

1.5 : 12

2. Functional Representation

1, forn=13
x(n) = {4, forn =2
0, elsewhere
3.Tabular Representation

i

x(n)

.0 0
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a

Representation of Discrete-Time Signals (Cont.)

4.Sequence Representation

An infinite-duration signal or sequence with the time origin (n=0) indicated by the symbol Tis
represented as

x(n)=1{..0, (T) 1,4,1,0,0,. .}
x(n) = {9, 1,4,1,0,0,. .}
A finite duration sequence can be represented as
x(n) = {3, -1, —%, 5,0,4,~1}

Whereas a finite-duration sequence that satisfies the condition X (Tl) = 0 for n<0 can be represented as

x(n) = {?, 1,4,1}
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a

Some Elementary Discrete —Time Signals

1. Unit Sample Sequence

The unit sample sequence is denoted as 0(1) and is defined as

1, forn=0
oln) = {0, forn #0

&(n)

1

__2___10 l 2 3 4 Per H
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f Some Elementary Discrete —Time Signals (cont.)
2. Unit Step signal

The unit step signal is denoted as u(7) and is defined as

11, forn=0
“) =10 forn <0

u(n)

1 ® & ¢ & & »

012 3 4567 n




f Some Elementary Discrete —Time Signals (cont.)
3. Unit ramp signal

The unit ramp signal is denoted as U,(1) and is defined as

(n) = n, forn>0
V=10, forn <0
u,(n)

1]




f Some Elementary Discrete —Time Signals (cont.)

4, Exponential signal

The exponential signal is a sequence of the form
x(n) =a" for all n

If the parameter a is real, then x(n) is real.

1] L ]
]

L qr
! 0<a<1 a> x{n)

”[mmllnmm......, M...,,fnnnr1llﬂm|

H n
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Class Test Next Week
Syllabus: Slide 1-54
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f Classification of Discrete —Time Signals
Energy Signal and Power Signal

The energy E of a signal x(n) defined as F = Z X (H)|
n=—00
The energy of a signal can be finite or infinite. If E is finite (i.e. 0<E<), then x(n) is called an energy

signal.

Many signals that posses infinite energy have a finite average power.The average power of a discrete-
time signal x(n) is defined as

—_ 1 2 2
S
If we define the signal energy of x(n) over the finite interval —-N < n < Nas Ey = Z |x(n) |2

n=—N
Then we can express energy E as E= lim Ey
N—oo
1

So the average power of the signal x(n) as P = h}gl‘lm m

Clearly, if E is finite, P=0. On the other hand, if E is infinite, the average power P may be either
finite or infinite. If P is finite and nonzero, the signal is called a power signal.
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f Classification of Discrete —Time Signals (Cont.)
Energy Signal and Power Signal (Cont.)

Determine the power and energy of the following sequence.

xn =au(n) ,whered0<a<1

00) 00) 00) (0] 1
> reP= ) [aumP= ) [aP= ) [@'=——
n=—oo n=—oo n=o n=o
Formula rk = Jrl <1
[ k=0 1=

Here,for0 < a < 1wecansay 0 < E <

So, x(n) = a™u(n) is an energy signal for 0 < a <1
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/ Classification of Discrete —Time Signals (cont.)

Determine the power and energy of the unit step sequence.

. 1 N )
P=0m N1 2w

r=0

) N+1
= lim =

N 2N +1 Nese 2+ 1/N

1+1/N 1

2

Consequently, the unit step sequence is a power signal. Its energy is infinite.

A signal can be an energy signal, a power signal or neither type. Unit ramp sequence is neither a

power signal nor an energy signal.

e A signal can not be both an energy signal and a power signal.

Problem: Check Whether the following signals are energy or power signals

(@) 6(m) (ii))x(n) = (%)nu(n) (iii) x(n) = sin(gn) (iv) x(n):effn

@
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f Classification of Discrete —Time Signals (cont.)
Periodic Signal and aperiodic signal
A signal x(n) is periodic with period N (N>0) if and only if
x(n+ N)=x(n)foralln
The smallest value of N that satisfies above relation is called the fundamental period. If there is no value
of N that satisties the above relation, the signal is called nonperiodic or aperiodic.
The sinusoidal signal in the form x (n) = A sin(27fn) is periodic when fis a rational number, that

is, if fois expressed as k
fo= N’ where k and N are integers

Periodic Signals are Power Signals
The energy of the periodic signal x(n) for —00 < n < 0 is infinite. On the other hand , the average
power of the periodic Signal is finite and is equal to the average power over a single period. Thus if x(n)

is periodic signal with fundamental period N and takes on finite values , its power is given by

N-1
P — % Z 1x(n) |2 Consequently the periodic signals are power signal.
n=0
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a Causality of Signal N

Causal Signal

A continuous time signal x(t) is called causal signal if the signal x(t) = 0
for t < 0. Therefore, a causal signal does not exist for negative time. The
unit step signal u(t) is an example of causal signal as shown in Figure-1.

Similarly, a discrete time sequence x(n) is called the causal sequence if
the sequence x(n) = 0 forn <0. _ g

1

UI |
Figure-1
Anti-Causal Signal

A continuous-time signal x(t) is called the anti-causal signal if x(t) = O
for t > 0. Hence, an anti-causal signal does not exist for positive time.

The time reversed unit step signal u(-t) is an example of anti-causal
signal (see Figure-2).

Similarly, a discrete time sequence x(n) is said to be anti-causal
sequence if the sequence x(n) = Ou{f_gr t > 0.

4

1

o

0 [
Figure-2
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4 Causality of Signal (cont.) N

Non-Causal Signal

A signal which is not causal is called the non-causal signal. Hence, by
the definition, a signal that exists for positive as well as negative time is
neither causal nor anti-causal, it is non-causal signal. The sine and
cosine signals are examples of non-causal signal (see Figure-3).

x(1)

/\/l\/\
VIV

Figure-3

—~¥
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f Classification of Discrete —Time Signals (cont.)
Symmetric (even) signal and Antisymmetric (odd) Signal
A real valued signal x(n) is called symmetric (even) if
x(-n)=x(n) for all n.
On the other hand, a signal x(n) is called antisymmetric (odd) if
x(-n)=-x(n) for all n

If x(n) is odd, x(0)=0
x(n)

‘ X (H)

~5-4-3-2-1 [0} I

l l 1 2 3 45

1] K

4-32-101234 7 .

Even Signal Odd Signal
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f Classification of Discrete —Time Signals (cont.)

Symmetric (even) signal and Antisymmetric (odd) Signal

Many signal are neither even nor odd. Any arbitrary signal can be expressed as the sum of two

signal components, one of which is even and the other odd.

The even signal components is expressed as
| 1
x.(n) = E[.x(n) + x(—n)]

The odd signal components is expressed as

1
Xo(1) = E[x(n) — x(—n)]

The signal x(n) is expressed as-

x(n) = xe(n) + x,(n)
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a

Classification of Discrete —Time Signals (cont.)

Symmetric (even) signal and Antisymmetric (odd) Signal

Find the even and odd components of following signal X(n).

4 X0) l:{{'ﬂ}
s I 2 1 x(n)={2,1.5,1,0.5, 0}
¢1 ?1 x(-n)= {0,0.5,1,1.5,2}
I — " - T S
Xe(n) o(n)
xe(n):%['x(n>+x(_n)]: {131’131’1} *2 | i;{{
0
Xe (M) = l[x(n) — x(—n)]= {1,0.5,0,-0.5,-1} & l T |’
2 /|\ . s T HF
| > l

Task: Find the even and odd parts of the following signals:

(a) x(n)=u(n) (b) x(n) = a™u(n)

@
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a

Simple manipulations of Discrete-Time Signals

Time Shifting

A signal x(n) may be shifted in time by replacing the independent variable n by (n-k), where k is
integer.
If k is a positive integer, the time shift results in a delay of the signal by k units of time.

If k is negative integer, the time shift results in an advance of the signal by |k| units in time.

x(n) x(n—3)

Callllll

1:4_3_2]{)]234 -10123 4567 n
Delay/Right Shift
Original Signal ) x(n+2) y/ R1g
T
1] i
- .
—6-5-4-3-2~10 l 2
Advances/Left Shift
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f Simple manipulations of Discrete-Time Signals (Cont.) \
Folding

Another useful modification of the time base is to replace the independent variable n by —n.The

result of this operation is a folding or a reflection of the signal about the time origin n=0

x(n)
4 4
H-—UJ—Ail —3-2 — ‘ 4
3511012 3 4 n —4-3-2-1 |01 2 3 n
o . Folded signal
Orlglnal Slgnal
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/ Simple manipulations of Discrete-Time Signals (Cont.) \

Shifting and Folding

It is important to note that

the operations of folding and time delaying (or advancing) a signal are not

commutative. If we denote the time-delay operation by TD and folding operation by FD, we can write-

TDy|x(n)] = x(n — k), k>0
FD[x(n)] = x(—n)

TD{FD[x(m)]} = TDg[x(—n)] = x(—n + k)

FD{TD;[x(m)]} = FD[x(n — k)] = x(—n — k)

ym)=x(-n+2)
x(n) x(-n}
4l
4 4=
&
iR [ 1]
Original Signal Folded signal Folded and shifted signal
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/ Simple manipulations of Discrete-Time Signals (Cont.)

Time Scaling or Down sampling

Another modification of independent variable involves replacing n by un, where i is an integer. We

refer to this time-base modification as time scaling or down—sampling.

If the signal x(n) was originally obtained
by sampling an analog signal xq (1),
then x(n) = x4(nT),

whereT is the sampling interval.

-—8—8

Now, y(n) = x(Zn) = Xg4 (2Tn).

Hence the time-scaling operation is
equivalent to changing the sampling rate
from 1/T to 1/MT, that is, to decrease
the rate by a factor M. This is a down-

sampling operation.
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x(n)

.7....#

*—o—o—o o —
119%2—10123456 "
y(n) = x(2n)
[ ]
3 I
—a—a—0—0 — - ————%
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Kimple manipulations of Discrete-Time Signals (Cont.) \
Addition, Multiplication and Scaling of sequence

Amplitude Scaling of a signal by a constant A is accomplished by multiplying the value of every signal

sample A. Consequently, we obtain

y(n) = Ax(n), —0C < 1 < 00

The addition (sum) of two signals x1(n) and x(n) is a signal y(n), whose value at any instant is
equal to the sum of the values of these two signals at that instant, that is,

v(r) = x1(n) + x2(n), —0C < N < OO0

The product of two signals is similarly defined on a sample-to-sample basis as

v(n) = xj(n)xa(n), —00 < N < 00
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a

Input-Output Description of System

Determine the response of the following sytems to the input signal

( ) . |”|! '_3 E n {_: 3
10, otherwise
(a) y{(n) = x(n) (1dentity system)

(b) y(n) = x(n — 1) (unit delay system)

(©) y(n) = x(n + 1) (unit advance system)

(d) y(n) = %[x (n+ 1)+ x(n)+ x(r — 1)] (moving average filter)

(e) y(n) = median{x(x + 1), x(n), x(n ~ 1)} (median filter)

n

) yn) = Z x(k) = x(n) +x(n — 1) +x(n — 2) + - - (accumulator)

=00
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ﬁlock diagram representation of Discrete Time System \

11l 115 EER

x(n) | Discrete-time _}'(”) .
_ System )
Input signal Y Qutput signal
o1 excitation 01 Iesponse

y(n) = tx(n)]
y(n)  x(n)

The above expressions represent that x(n) is transformed by the system into a signal y(n) where the
symbol T denotes the transformation (also called an operator) or processing performed by the system

on x(n) to produce y(n).
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a

Block diagram representation of DT System \

An adder System

An adder system that performs the addition of two signal sequences to form another (the sum)
sequence y(n). Note that it is not necessary to store either one of the sequence in order to perform the

addition i.e. the addition operation is mernoryless.

x(n)

y(n) = xy(n) + x,(n)
+ =

.XZ(n)

Constant Multiplier

This operation apply a scale factor on the input x(n). It is also rnemoryless operation.

y(n) = ax(n)

P

x(n)

Y o
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/ Block diagram representation of DT System (Cont.) \
A signal Multiplier

It is also Memoryless system that multiplies two signal sequences to form another and is represented

by following block- o (t)
xq(n) y(n) =x(n)xy(n
X4(n)
Unit delay element

In unit delay system if input signal is x(n), the output is x(n-1). In fact, the sample x(n-1) is stored
in memory at time n-1 and it is recalled from memory at time n to form y(n)=x(n-1). Thus this

basic building block requires memory.

x(n) y(n) =x(n-1)

' o

Y
I

Unit advance element

A unit advance moves the input x(n) ahead by one sample in time to yield x(n=1). Such
advances impossible in real time, since, it involves looking into future of the signal. On the other hand,

if we store the signal in the memory of the computer, we can recall any sample at any time.

x(n) y(n)=x(n+1)

P

Y
™
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/ Block diagram representation of DT System (Cont.) \

Problem: Using basic building blocks sketch the block diagram representation of the discrete-time
system described by the input-output relation

ym) = %y(n — 1) +%x(n) -I—%x(n —1)

Where x(n) is the input and y(n) is the output of the system.

Black box
. — 05 5
x(n) : i :
' : @ ~(+) | 5 > ym)
: 05 | <
: 025 Lo i
Blackbox
: ™! E
: 05 i
x(n) : + - @ | : - y(n)
I -1 t
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/ Block diagram representation of DT System (Cont.)

1/2

x[n] H—> yln]
71
_x(m)+x(n—-1)
() ==
x[n] = é[n]
1F 1 1f ]
0 0 —q—o—]—J—v——v—-v-—v-o-v—
-2 0 2 4 6 8 10 -2 0 2 4 6 8 10
" 5 od =ik .
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/ Block diagram representation of DT System (Cont.)

Problem: Find the output of the following system, if @ = 1. 05 and input
x(n) =10046(n)

x{n] ® yln]
x z“l
y(n) =x(n) + ay(n —1)
x|n] = 100 4[n]
> y[0] = 100
» y[1] = 105

» y[2] = 110.25, y[3] = 115.7625 etc.
*» In general: y[n] = (1.05)"100 u[n]
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/ Block diagram representation of DT System (Cont.)

Problem: Find the output of the following system, if & = 1 and input x(n) =
6(n). Assume initially all input, output and memory blocks are 0.

gln] —(+) +— yin)
X
2_1 z_l z_l
y(n) =x(n) + ay(n — 3)
1 .
o ® @
0

-2 0 2 4 6 8 10

What happens if @ = 0.9??
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/ Classification of DT Systems \

Staticvs dynamic System

v A discrete-time system is called static or memoryless if its output at any instant n depends at most
on the input samples at the same time, but not on past or future samples of the input. In other cases,

the system is said to be dynamic or to have memory.

v’ If the output of a system at time n is completely determined by the input samples in the interval
fromn-Nton (N = 0), the system is said to have memory of duration N.
v IfN=0, the system is static. If 0<SN<\®0, the system is said to have finite memory, whereas if N= <0,

the system is said to have infinite memory.

) Example of Dynamic Memory
Example of Static Memory

(n) ax(n) y(n) = x(n) + 3x(n — 1) Finite Memory
yun)=a

y(n) = nx(n) + bx>(n) y() = x(n—k)  Finite Memory
k=0

00
y(n) = Z x(n — k) Infinite Memory
k=0
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/ Classification of DT Systems (Cont.)

Time variantvs time invariant System

A system is called time-invariant if its input-output characteristics do not change with time. In other
words, a relaxed system T is time invariant or shift invariant if and only if
T
x(n) — y(n)
i . T
implies that x{(n—k) — yn—k)

for every input signal x(n) and every time shift k. Otherwise the system is said to be time variant.

Identifying a system asTime variant or time invariant
Step-1: Excite the system with an arbitrary input sequence x(n), which produces an output denoted as
y(®).

Step-2: Delay the input sequence by some amount k and recompute the output which is written as

y(n, k) = T[x(n — k)]
Step-3: Delay output y(n) obtained in step-1 by some amount k to find y(n-k).

Now if y(n,k)=y(n-k), for all possible values of k, the system is time invariant.

But if the output Y(1n, k) # y(n — k), even for one value of k, the system is time variant.
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/ Classification of DT Systems (Cont.)

Time variantvs time invariant System: Determine if the following systems are time

invariant or time variant. (Example 2.2.4, Proakis)

The system is described by

y(n) =T [x(m)] = x(n) —x(n—1)
Input delayed by k unit and applied to the

system results

The input-output equation for this system is

y(n) = T [x(r)] = nx(n)
The response of this system to x(n-k) is

v(n,k) =nx(n — k)

y(in, k) =x(n -k —x(n —k— 1) If y(n) delayed by k unit, we get
If y(n) delayed by k unit, we get yin —k) = —k)x(n —k)
yin—-k)=x(n—k) —x(n—k—1) = nx(n — k) — kx(n — k)
System follows that y(n,k)=y(n-k). The system is time variant, since
Therefore, the system is time invariant. y(n, k) #y(n — k),

(-
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/ Classification of DT Systems (Cont.)

Linear Vs nonlinear System

A linear system is one that satisfies the superposition principle. Mathematically, a system is liner if and
only if
! T [a1x1(n) + azxa(n)] = a1 T [x1(n)] + a2 T [x2(n)]

For any arbitrary sequences x1(7) and x2(1), and any arbitrary constant a1 and a;

xqy(n)

T

a
| y(n)
+ - T o
X,(n) /
- The system T is linear if
¢ . o
v i) 0 and only if y(n) = y (n)
- T -
y'(n)
+ -
X4(n) fdy
- T -

See example 2.2.5 (Proakis)
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/ Linearity of a System \

Problem

Determine whether the following system described by the equation is linear or nonlinear.
dy(t)
— t) =x(t
=+ y(6) = x(0)

Using the superposition theorem, we can prove that the system is linear.
For input x,(t), the output is

d

y;ft) +y:1(®) =x,.(6) .. (1)
For input x,(t), the output is
d

720 130 = %) @)

Eq"(1) *a;+ Eq"(2) * a,

d d
aq y;ft) + a; y;t(t) + a1y, (8) + azy, (1) = ayx,(£) + azx,(t) .. (3)

Now Putting a;= a,=1, x,(t)+ x,(t)= x(t) & y,(t)+ y,(t)=y(t) in Eq*(3) we get,

dy(t) B
3 T y(t) = x(t)

Which is same as the original Equation. So, the System is Linear.
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/ Linearity of a System

Problem

Determine whether the following system described by the equation is linear or nonlinear.
dy(t
%) Fy(t) +2 = x(t)

Using the superposition theorem, we can prove that the system is linear.
For input x4(t), the output is

d
y;ft) +y;() +2=x,() ..(1)
For input Xx,(t), the output is
dy,(t) _
7 + y,(t) + 2 =x,(t) ..(2)

Eq"(1) *a;+ Eq"(2) * a,

dy1(t) dy,(t)
a4 (;t + a, ;t + alyl(t) + ary- (t) + 2a1 + 2a2 = alxl(t) + a,X- (t) . (3)

Now Putting a,= a,=1, x;(t)+ x,(t)= x(t) & y;(t)+ y,(t)=y(t) in Eq*(3) we get,

dy(t) B
T+y(t) + 4 = x(t)

Which is not the same as the original Equation. So, the System is Non-Linear.
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/ Classification of DT Systems (Cont.) \

Causal vs Noncausal System
A system is said to be causal if the output of the system at any time n [i.e., y(n)] depends only on

present and past inputs [i.e., x(n), x(n-1), x(n-2), ....] but does not depend on future inputs [i.e.,

x(nt1),x(n+2),....]

Mathematically, y(n) = F[,x n),x(n—-—1,x(n-2), .. ]

If a system does not satisfy this definition, it is called noncausal. Such a system has an output that

depends not only on present and past inputs but also in future inputs.

Note:

It is apparent that in real-time signal processing applications we cannot observe future values of the
signal, and hence a noncausal system is physically unrealizable (i.e., it can not be implemented). On the
other hand if the system is recored so that the processing is done by off-line (nonreal time), it is

possible to implement a non causal system.
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/ Classification of DT Systems (Cont.)
Stablevs unstable System

An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and only if
every bounded input produces a bounded output at each and every instant.

The condition that the input sequence x(n)and the output sequence y(n) are bounded is translated

mathematically to mean that there exist some finite numbers, say M, and M, such that

x(n)| < M, < oc, ly(n)] < My < o0 for all n.

If, for some bounded input sequence x(n), the output is unbounded (infinite), the system is classified

as unstable.
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/ Classification of DT Systems (Cont.)

Stable Vs unstable System (Cont.)

Example: Check whether the following system is stable or unstable.
@ yn) =x%2(n) @di)ym) =nxn) (ii)yn) = cos(n)x(n) (iv)y(n) =
@) y(mn) = x*(n)

For any bounded input x(n)= By < 0,
y(n) = (Bx)?<

At each and every instant (for any value of n), the output is bounded.
Therefore, the system is BIBO stable.

(i) y(n) = nx(n)
For any bounded input x(n)= B, < oo,

y(n) = n(By)*
Whenn = o0, y(n) = o

At each and every instant (for any value of n), the output is not bounded.
Therefore, the system is BIBO unstable.

(ii1) Stable

Hints: y(n) = cos(n)By ,—1 < cos(n) < 1 for any value of n
(iv) Unstable

Hints: y(n) = By/sin(n) ,whensin(n) = 0,y(n) = o
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a Classification of DT Systems (Cont.) I
Stable Vs unstable System (Cont.)

EXAMPLE 2.2.7

Consider the nonlinear system described by the input—output equation
y() = y*(n — 1) + x(n)
As an inpuf sequence we select the bounded signal
x(n) = Cé(n)
where C is a constant. We also assume that y(—1) = 0. Then the output sequence is
YO =C, y)=C% y2y=C% ., ym=C¥

Clearly, the output is unbounded when 1 < |C| < oo. Therefore, the system is BIBO unstable,
since a bounded input sequence has resulted in an unbounded output.
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/ Analysis of DT Linear Time-Invariant System \

There are two basic methods for analyzing the behavior or response of a linear system to a given input

signal:

Method-1: This method is based on the direct solution of the input-output equation for the system
which is called the difference equation.

N

M
y() ==Y ay(n—k) + ) bx(n —k)

k=1 k=0
Method-2:

In this method, the input signal x(n) is decomposed or resolved into a sum of elementary signals. The
elementary signals are selected so that the response of the system to each signal component is easily
determined.

Then, using the linearity property of the system, the response of the system to the elementary signals

are added to obtain the total response of the system to the given input signal.
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Elaboration of 2"d method

Suppose that, the input signal x(n) is resolved into a weighted sum of elementary signal components

()} |
x(n) = Z crxk(n) C is the set of amplitudes (weighting coefficients)
k

Suppose the response of the system to the elementary signal component X (1) is yr(n)

yi(n) =T [xe(n)]

Considering the linearity property total response of input signal x(n) is

y(n) = Tlx(n)] = [Z Cr Xk (n)}

Choice of elementary signal

k If we place no restriction on the characteristics of input
= Z cr Vi () signal, then most convenient way to express the input
k

sequence as weighted sum of unit sample (impulse)

sequence.
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o0

x(n)= Y  x(k)s(n—k)

k=—00

@

(b)

x(k) 6(n—k)

() .

f Analysis of DT Linear Time-Invariant System (Cont.)
Resolution of a Discrete Time Signal into Impulses
x(n)
x(n)y=d8n—k) . .
torr Iy 21l ] ] 1l
X — k) = x(k)S(n — k) R 1 l [ !
@ x(k)
501 - k) |
o k

——.—H——F—.—H—E}———V—F-V—T—H—__V_V_—n

™
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Example 2.3.1: Consider the special case of a finite-duration sequence given as

x(n) = {2, f-Tl, 0, 3}

Resolve the sequence x(n) into a sum of weighted impulse sequences

Solution: Since the sequence x(n) is nonzero for the instants n=-1,0,2, we need three impulses at

delays k= -1,0 and 2.

x{(n) =28(n+1)+46(n) 4+ 36(n — 2)
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/ Analysis of DT Linear Time-Invariant System (Cont.) \

The response of the system for input x(n)

o0

k=—o0
= Z x (k)T [8(n — k)]
k=—00
— Z x(K)h(n, k)
k=—00

Using Time Invariance property

ym) = ) x()h(n—k)

k=m00

Response of LTI System to arbitrary Inputs:The Convolution Sum

Response of the system for the unit sample sequence at n=k ; y(#, ky=h(n, k) = 'T[(S (n — k)]

Resolving the sequence x(n) into a sum of impulse sequence,

y(m) = Tx(m] =7 [ > x(0sn — k)
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x(n) = Y  x(k)s(n —k)

k=—00

|

Time- Invariance property

h(n) = T[6(n)]
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/ Analysis of DT Linear Time-Invariant System (Cont.) \

Response of LTI System to arbitrary Inputs:The Convolution Sum

o0
y(n) = Z x(k)h(n — k)  The Convolution Sum

k=—o00
The above equation that gives the response y(n) of the LTI system as a function of the input signal x(n)

and unit sample (impulse) response h(n) is called a convolutional sum.

The convolution sum is used to compute the output of a LTI system for a given input
x[n] and impulse response h[n].
The process of computing convolution involves the following four steps:

1. Folding. Fold h(k) about k = 0 to obtain k(—k).

2. Shifting. Shift h(—k) by ng to the right (left) if ng is positive (negative), to obtain
hing — k).

3. Multplication. Multiply x(k) by h(ng — k) to obtain the product sequence
Un, (k) = x(k)h(ng — k).

4. Summation. Sum all the values of the product sequence Up, (k) to obtain the
value of the output at time n = ng. ]
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/ Analysis of DT Linear Time-Invariant System (Cont.) \

Example (1) of Convolution Sum
The impulse response of a linear time-invariant system is hn) ={1.2,1, -1}
1\

Determine the response of the system to the input signal x(n) = {1! 2,3, 1)

Solution
The Convolution Sum hk) x(k)
"3'
- 2 f
y(n) = x(K)hn — k R | A
Z ( ) ( ) 01234 k

k=—00

The output at n=0

YO = Y x(oh(—k) Product

e 0 (k) vo(k) sequence
2 2
ve(k) = x(kYh(—k) o2t ! — oo oo TH_,
1—1 012 k 1012 k
o (b)
y(©O) = Y wvotk) =4 i}f
1t

k=—0o0

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




/ Analysis of DT Linear Time-Invariant System (Cont.) \

Example (1) of Convolution Sum (Cont.)

' x(k)
The response of the system at n=1, hi{=k) 3 .
N 2 4 .
y(b) = Z x()h(l — k) —H_2 T T - oo —— oo ! o~
S -1 012 k -101234 &
n (k) = x(kKYh(l — k) iL Product
U‘l{k) roduac
| o h(1 =) M:ﬁump]y 4 sequence
NOEIBRNGES 2 I with x(K)
k==00
-1 ! |
l 012 k 01 2 k
The response of the system at n=-1,
o h(~1—k) :> Product
y(—=1) = Z x(k)h(=1—k) Multiply -i(8) sequence
f=mee I 2 with (k)
y(—1) =1 H_l T —-0-0-0
-2-1 0 1 k
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Example (1) of Convolution Sum (Cont.)
In similar manner, we obtained
y(2)=8,y(3)=3, y(H)= -2, y(5)=-1

and y(n)=0, for n>5

Also, y(-2)=0 and y(n)=0 for n<-1

The enter response of the system ,

& OC
$® OC

)7(”) e { Couy 09 05 ]-9 i!'s 85 8:- 39 _29 ——19 05 03 . }

) =3 v, (k)

k:uOO
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Commutative properties of Convolution Sum

We know the equation of convolution sum,

y) = ) x(h(n—k)

k=—00

Defining a new index, m=n-k, we can write k=n-m. The above equation can be expressed as:

y(n) = Z x(n —m)h(m)

M=—00

Since m is a dummy index, we may simply replace m by k so that

oQ

ymy= Y x(n—khk)

k=—00

x(n) * h(n) = h(n) xx(n)
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Analysis of DT Linear Time-Invariant System (Cont.)

Example (2) of Convolution Sum

h(n) = a™u(n),la| < 1

When the input is a unit step sequence, that is, x(n)=u(n)

Solution

Determine the output y(n) of a relaxed linear time-invariant system with impulse response

h(k) x(k)
| le
1 RERE
Tty
0 1 2 3 4 k 0 1 2 3 4
{a) (b)
(k) vp(k)
i 1y
y(0) =1 [ { [
[ * »r— — . - - 3
vil)=14+a -3 =2 -1 0 1 k -1 0 1 2
-8 © u (k)
le | ] 4]
& L —i X & & &
2 -1 0 1 2 k -1 0 1
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Example (2) of Convolution Sum (Cont.)

W2 - k) .
}’(2J=l+ﬂ+{12 I e 1e
Clearly, for n>0, the output is ‘ [ [
- - ——e
-1 0 1 2 i -1 0
yin)y=1+4a -I-a2+- -+ a” y(n) (e)
1
_ n+l I—a| 1ia1d o o 77 asymptote
— 1 a l+a
1—a L4 ]
On the other hand for n<0, the - o

The final value of output as n approaches infinity is

y(00) = lim y(n) =
n—00 1—a

A plot of the output y(n) is illustrated in Fig (f)
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Example 3) of Convolution Sum

1 n

Find the total response when the input function is X (n) = (E) u(n) and the impulse response is
n

givenbyh(n) = (%) un)

Applying the convolution formula,

o © 1 k 1 n—k
y(n) = x(k)h(n — k) = (5) u(k) (g) u(n — k)
k=—c0 k=—o0
~ n 1 k 1 n—k 1 ) n 3 k
- 66 e G
k=0 k=0
) (1 n1 — (%)n+1
Y10

1 1\"
= (—2)(5)" u(n) + 3 (5) u(n)
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/ Analysis of DT Linear Time-Invariant System (Cont.)

Practice Problems

1) The impulse response of a system is h(n)=u(n), find the output of the system when input

x(n)=u(n).

2) The input and impulse response of a system is given below. Find the output of the system.
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/ Analysis of DT Linear Time-Invariant System (Cont.)

System with Finite-Duration and Infinite-Duration Impulse Response

Linear time-invariant system may have finite duration impulse response (FIR) or infinite duration
impulse response (IIR).

An FIR system has an impulse response that is zero outside of some finite time interval. For the causal
FIR systems we can write:

h(n)=0, n<0 and n=2 M

The convolution formula for such system reduces to

M-1

y(m) = h(l)x(n—k)
k=0
Output at any time n is simply a weighted linear combination of the input signal samples x(n), x(n-1),

..., X(n-M+1). An FIR system has a finite memory of length M samples.

An IIR linear time-invariant system has an infinite-duration impulse response. The output of I[IR

system based on convolution formula, is

ym) = h(x(n—k)
k=0
In this case, the system output is a weighted [by the impulse response h(k)] linear combination of the

input signal samples x(n), x(n-1), x(n-2), ..... Since this weighted sum involves the present and all the
put sig P g P

past input samples, we say the system has an infinite memory.
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ﬁiecursive and Non-recursive discrete-time system \

The convolution summation formula expresses the output of the linear time-invariant system explicitly
and only in terms of the input signal. There are many systems where it is either necessary or desirable to
express the output of the system not only in terms of the present and past values of the input, but also in
terms of the already available past output values. In general, a system whose output y(n) at time n
depends on any number of past output values y(n-1), y(n-2), ....1is called a recursive system.
Example of recursive system:

Computation of cumulative average of a signal x(n) in the interval 0OSk <n
n

1
y(n) = Tl—+1 X(k) ) n = 0,1, crr e
k

The computation of y(n) requires the storage of all the input samples x(k) for 0< k < n. Since n is
increasing, memory requirements of the system grow linearly with time.

However y(n) can be computed more efficiently by utilizing the previous output value y(n-1)

n—1
(n+ Dy(n) = x(k) + x(n) =ny(n—1) + x(n)
k=0
Hence,
n 1
y() =n+1y(n—1)+n+1x(n)
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ﬁ{ecursive and Non-recursive discrete-time system (Cont.)

y(m) = ——ym—1)+

The output of a causal and practically realizable

n+1

x(n)

system recursive system can be CXPI'GSSGd in

general as

y(n) = F[y(n — 1), y(n —2), ...

x(n)
0

Y= N),x(n), x(n — 1), ..., x(n — M)]

If y(n) of a system depends only on the present and past inputs, then

Such a system is called non-recursive.

x(n)

Y

Fx(n), x(n=1),
L x(n— M)

y(n)

x(n}

y(n) = Flx(n),x(n —1), ..., x(n — M)]

N\ ¥n)
= X -
_1
n+1
- Z_] -
T ft
| Fhn=1) =N, ym
x(n), .., x(n-M)]
| Z_l
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/ Correlation of DT signals \

> A mathematical operation that closely resembles convolution is correlation. In convolution the input
and impulse response are involved whereas in correlation two signal sequences are involved.
> The correlation between the two signals is to measure the degree to which the two signals are similar

and thus to extract some information that depends toa large extent on the application.

> Correlation of signals is often uncounted in radar, sonar, digital communications, geology and other

areas in science and engineering.

Crriginal
Echo i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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/ Application of Correlation

Correlation in radar and active sonar applications

x(n) is the transmitted signal and y(n) is
the received signal.

If a target is present y(n) will be
y(n) = ax(n — D) + w(n)

Where & is some attenuation factor representing
the signal loss involved in the round—trip

transmission of the signal x(n), D is the round trip

delay and w(n) represents additive noise that is
picked up by the antenna and any noise generated

by the electronic components and amplifier.

If there is no target,
y(m)=w(n)

Comparing two signal x(n) and y(n) radar detects whether a target is present or not and also
calculate the distance if target is present. In practice, the signal x(n-D) is heavily corrupted by the
additive noise to the point where a visual inspection of y(n) does not reveal the presence or
absence of the desired signal reflected from the target. Correlation provides us with a means for

extracting this important information from y(n).
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Correlation in radar and active sonar applications (Cont.)
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Figure :(a) Transmitted tone burst (b)Received weak echo(c)Received echo buried mnto
background noise(d)CCF between (a) and (c) to locate a weak echo. It shows that after 500
units delay an echo arrives (location of the peak).




/ Application of Correlation (Cont.) \

In digital Communication

Digital communication is another area where correlation is often used. In digital communications the
information to be transmitted from one point to another is usually converted to binary form, that is, a
sequence of zeros and ones, which are then transmitted to the intended receiver.

Signal sequence to transmit a logic 0: xo(n) for0 <n <L —1

Signal sequence to transmit a logic 1: x1(n) for 0 <n <L —1

L represents the number of samples in each sequence.

The received signal can be represented as-
y(n) = x;(n) + w(n), i =0,1, 0<n<L-1
w(n) represents the additive noise.
After receiving y(n), the receiver compares the received signal y(n ) with both xo(n) and x1(n) to
determine which of the two signals better matches y(n). The comparison process is performed by means

of the correlation operation.
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Crosscorrelation

Crosscorrelation and Autocorrelation

Suppose that we have two real signal sequence x(n) and y(n) each of which has finite energy. The

crosscorrelation of x(n) and y(n) is a sequence Txy(l) , which is defined as

Tyy(D) = x(m)y(n —1), [=0,+1,+2,....
n=—oo
Or, equivalently, as
Tey(D) = x(n+ Dyn), [=0+1,+2,....
n=—oo

Autocorrelation
In special case where both signal sequences are same (i.e. y(n)=x(n)), we have the

autocorrelation of x(n), which is defined as the sequence

(00)

7"xx(l) — x(n)x(n - l); [ = O, il, i2, ......

n=—oo
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4 A

Difference between Correlation and Convolution

v' In the computation of convolution, one of the sequence is folded, then shifted, then
multiplied by the other sequence to form the product sequence for that shift, and finally, the
values of the product sequence are summed.

v Except for the folding operation, the computation of the crosscorrelation sequence involves
the same operation: shifting one of the sequence, multiplying the two sequence, and
summing over all values of the product sequence.

v So, if we first fold a sequence y(n) to y(-n) and find the convolution between two sequences

x(n) and y(-n), it results crosscorrelation between x(n) and y(n).

rry(D) = x() * y(=1)
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/ Example of determining Correlation Sequence

Determine the crosscorrelation sequence 7'xy (1) of the sequences

x(n) = {2,-1,3,7,1,2, =3}

T
y(n) ={1,-1,2,-2,4,1,-2,5}
Solution: 0 !
Tey(D) = x(n)y(n — 1), [=0+1,%2,....
n=—oo
m ]2 2 e P2 B
x(n) 2 1 3 7 1 2 3 0 1=0 roy (0) =7
y(n) i |-l |2 2 4 1 2 5 Fay(—1) =0
Y x(n)y(n) 2 1 6 14 4 2 6 0 7 Ty (—2) =33
y(n+1) 12 2 4 1 2 5 0 1=
2x()ym+l) 2 2 6 28 1 4 15 0 0
y(n+2) 2 2 4 1 2 5 0o 0 I=2
Yx(n)y(n+2) 4 2 2 7 2 10 0 0 33
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O 3 N O N
-1 3 7 1 2 -3

x(n) 2

y(n+3) 2 4 1 2 5 1=-3
2x(n)ym+3) 4 4 3 14 5 -14
y(n+4) 4 1 2 5 0 1=-4
Yx(m)yn+4) 8 -1 6 35 0 36
y(n+5) 1 -2 5 0 =5
2xm)y(+5) 2 2 15 19
y(n+6) 2 5 =6
2x(n)y(n+t6) 4 -5 9
y(n+7) 5 — 5
2x(m)y(n+7) 10 10

/ Example of determining Correlation Sequence (Cont.)

rxy(—3) = -14
rxy(—4) = 36

rxy(—S) =19

ey (—6) =9

rxy(—7) =10
For n<-7

Txy =0

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




/fxample of determining Correlation Sequence (Cont.) \

n 3 (2 Lo g2 1
1 3 7 1 2 -3

x(n) -
y(n-1) T [ [z =2 & |1 |=
Ty (1) =13 2x(ymn-1) -1 -3 14 2 8 313
Txy(2) = -18 y(n-2) 1 1 2 2 4 =2
3) =16
Ty (3) Yx(n)y(n-2) 3 7 2 4 12 -18
rxy (4) = -7
Txy(s) — y(n-3) 1 -1 2 2 1=3
Ty (6) = -3 2x(n)y(n-3) 7 -1 4 6 16
For n>6 y(n-4) 1 1 9) 1=4
Txy =0
* Y x(n)y(n-4) i |2 [¢ |3
y(n-5) 1 [ [1=¢
The maximum similarity between two
signals x(n) and y(n) obtained when Zx(n)y(n-S) 2 3 >
y(n) is delayed by 4 positions. y(n-6) 1 1=6
2x(n)y(n—6) -3 -3

Therefore, the crosscorrelation sequence of x(n) and y(n) is

@ rop (1) = {10, —9, 19, 36, —14, 33,0,7, 13, —18,16, —7, 5, —3}
+
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f Z-Transform \

The direct Z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series

X(z) = x(n)z™™

Where z is a complex variable.The relation sometimes called the direct z-transform because it

transforms the time-domain signal x(n) into its complex-plane representation X(z).

Z = rel® Where,
z N — r—ne—jwn ‘r" is a real number
eJ?is Euler's Number
=r" [COS (wn) - ] S in(wn)] @ is the angular frequency in radians per sample.

The z-transform of a discrete-time signal x(n) is denoted by

X(z) = Z{x(n)}

Whereas the relationship between x(n) and x(z) is indicated by

Z
x(n) X(z)
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Z-Transform

®
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Z-Transform \

Significance of z —n

r" when r=1

1 1 1 1

20 40 60 80
Sample No

cos(wt) when w=pi/4

100

T T

20 40 60 80
Sample No

Real part of z"=r" *cos(wn)

100

T T

20 40 60 80

Plot of r~"cos (wn) whenr=1 and

w = % per samples

100

7z~ N = p—Na—jon

=r " cos(wn) — jsin(wn)]
When,

r>1, Z~™ has exponentially decreasing oscillation
r<1, Z7™ has exponentially increasing oscillation

r=1, Z~™ has oscillation of constant amplitude.

So we can say

Z™™ represents a set of oscillating
components of constant or increasing or
decreasing amplitude based on value of z

z=rel® =a+ijb
r is the magnitude or modulus of z controls the

magnitude (increasing/decreasing/ constant) of
oscillation . — 2] = a2 + b2

W is the angle or argument or phase controls
frequency of oscillation.

w=/,z=tan"1—
a

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV /




f Significance of Z-Transform

Argand Diagram Im(z)
]
Unit Circle
S z=el®
1+0j
- 1 Re(z)
g

O Any point in the unit circle is associated with a complex number z which has a magnitude of 1
(27" has oscillation of constant amplitude)
O Ifz lies on the real axis of the argand diagram the signal Z""won’t oscillate.
* At point 1+0j, Z™™ has a constant amplitude of 1.
* Increase exponentially, if it lies between 0 and 1.
* decrease exponentially if it lies after 1.
O Ifz lies outside of unit circle (but not in real axis) Z~" has oscillation with exponentially

decreasing amplitude.

O Ifz lies inside of unit circle (but not in real axis) Z~"™ has oscillation with exponentially increasing
amplitude.
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f Significance of Z-Transform \

Significance of Z-Transform
X(z) = x(n)z "
n=—oo
In the above equation, x[n] is multiplied by Z7"(set of oscillating components of constant or increasing

or decreasing amplitude based on value of z), very similar to correlation.

Z-transform is the measure of similarities of discrete time sequence x[n] with all the frequency of
oscillations associate with Z™". Z-transform identifies the presence of exponentially increasing or

decreasing oscillations in the signal x[n].
Z-Transform of Impulse response

Taking the z-transform of a systems impulse response we get the following

O By identifying the presence of increasing and decreasing oscillations in the impulse response of a
system we can determine if the system is stable or unstable.

O By identitying the presence of sinusoids in the impulse response of a system we can determine the

systems frequency response. Note that a impulse input has all types of frequency components.
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f Region of Convergence (ROC) in Z-Transform

X(2)= Y x(n)z"

O Since the z-transform is an infinite power series, it exists only for those value of z for which this

series converges.

o The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a

finite value.Thus any time we cite a z-transform we should also indicates its ROC.

Poles and Zeros

When X(z) is a rational function, i.e., a ration of polynomials in z, then:

1. The roots of the numerator polynomial are referred to as the zeros of X(z), and
2.  The roots of the denominator polynomial are referred to as the poles of X(2).

Note that no poles of X(z) can occur within the region of convergence since the z-transform does

not converge at a pole.

Furthermore, the region of convergence is bounded by poles.
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EXAMPLE 3.7.1

Determine the z-transforms of the following finite-duration signals

(a)
(b)
(©)
(d)

(e)
b
(8)

_Il [FI) == '[1-. 2: 51 ?s [}3 ]-}

ra(n) = {1, 2, ? 7,0, 1}
x3(n) = {{T},O, 1,2,5.7.0, 1}

x4(n) = {2, 4, %, 7,0,1)

x5(n) = a(n)

xg(ny=06n —k). k>0
xmy=8m+k), k=0

Solution. From definition (3.1.1), we have

(a)
(b)
(c)
(d)
(e)

()
(g)

X1(z2) =142z 1 +5:2 4+ 73+ 772, ROC: entire z-plane except z =0

Xo(z) =22+ 2z + 547271 + 773, ROC: entire z-plane except z=0and z = o0
X3(z) = 272 +2z73 4+ 5274 47277 + 77, ROC: entire z-plane except z =0
X4(z) =22° + 47 + S+ Tz~ + 272, ROC: entire z-plane except z = () and z = 00

Xs(z) =1 [ie, 8(n) < 1], ROC: entite z-plane
Xo(z) = 2% [ie., 8(n — k) <> z7*].k > 0, ROC: entire z-plane except z =0

X:(z) = z* [ie., 8(n + k) <— zF], k > 0, ROC: entire z-plane except z = 00
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fCharacteristic Families of Signals with their corresponding ROCs

e

Signal ROC
Finite-Duration Signals

Causal

Entire z-plane

e eeoe ITTT#

except z=0
H
Anticausal P
/
Entire z-plane
except 7 =eo
0 & 7
Two-sided
7
Entire z-plane
T oo : exceptz=10
0 n // and z =
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ﬁixample 3.1.2 (Prokis)

Determine the z-transform of the signal

1
x(n) = (5)"u(n)

Solution:

1 1 1 1
X be ex d — _ 232 (23 —\r
(0 canbe expressedas  xn) = (1, (), ()2 (0% -+ ()"

1 1 1
The z transform of x(n): X(z) =1+ -Z_l + (z)zz‘z o (5)"2-" s 2

2
o0 oo
=Y (" =) Gz
n= 2 n=0 2
Using the geometric series, I+ A4+ A2+ A3+ = —— if |[A] <1
1-—
We can write, _ 1.1
X(@)=—7"" ROC: |5277| <1
1- QZ_ 1
2l > =
2l > 5
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/ ROC for Causal and Anticausal components of X(z)
z=re!’ wherer =|zland 0 = Xz

o0
X(@myeio = Y x(n)r e 7"

n=-—00
In the ROC of X(2), | X(2)] <
(9.8
X@l=| ) xmyr e

n=-—00

oo oo
< Y Ikt = Y x(myr
n=—0Q n=—00

Here | X(Z)] is finite if the sequence x(n)7 ™™ is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the range of values of r for

which the sequence X (TL)T'_n is absolutely summable.
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/ ROC for Causal and Anticausal components of X(z)- Cont.

-1

X@I< Y k@mr ™+ Y
n=0

R=—00

x(n)
it

x(n)
rn

oo o0
<) bx(=nmr"l+ )
n=1 n=>0

If X(z) converges in some region of complex plane, both summations in the above expression must be
finite in that region.

If the first sum in expression converges, there must exist values of r small enough such that the
product sequence X (—n)r™, 1 < n < o0, is absolutely summable. Therefore the ROC for the 1+

some consists of all points in a circle of some radius 11, where 11 < 0.

The second sum converges if there exist values of r large enough such that the product sequence,

x(n)

rn

, 0 < n < 00, is absolutely summable. The ROC for the second sum consists all points outside

of circle of radius r > 1.

ROC of X(z) is the common region in the z-plane (11 < 7 < 172) where both sums are finite.
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/ ROC for Causal and Anticausal components of X(z)- Cont.

e

Re(z)

Im(z)

|

V

Z

z- plane

i

’ = Re(z)

/ Rﬁgmn of convergence for

I(HJ

ROC: Causal Component

z-plane
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= Re(z)

Region of convergence for IX(z)l

Fa<i<n




ﬁixample 3.1.3 (Prokis) \

Determine the z-transform of the signal x(n)
®
x(n) =a"un) = [o", n=0 !
10, n<0 ] }

Solution: I I

S 155t

X(z) =ZC¥ Z ZZ(Q’Z ) 012345
n=0 n=0

If | z~1 | < 1 or equivalently, |Z| > ||, this power series converges to . Thus we have the z-

1—xz—

Im(z)

transform pair

x(n) = a"un) W EY X(z7) = 1-—-—052-‘? ROC: |z| > |e] V% 7/

If x= 1, we obtained the z-transform of unit step signal
T
e
ROC 7

7 W
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ﬁixample 3.1.4 (Prokis) x(n) \

Determine the z-transform of the signal =5 4 -3 =2 <110

o weo TITITTTTTTT

—a", n<-1

x(n) = —ad"u(—n—-1)= {

O<ax<l
Solution:
—~1 o0 L
X@= Y (" ==Y (@' Where,1=n ¢
n=—00 I=1
Using the formula,
2 3 2 A
A+A°+A+ - =A0+A+A +"--)=m
when |A| < 1 gives Im(z)
a1z 1

A e

Provided that |C¥_1Z < 1|or, equivalently, |z| < |&|.Thus x|

7))
FAA Re(z)
| 1 o7
x(n) = —a"u(—n—1) «— X)) = 11’

az
ROC: |z| < ||

(-
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fCharacteristic Families of Signals with their corresponding ROCs

(-

Signal ROC

Infinite-Duration Signals
Causal

___H_,‘TTTH

{ 7
Anticansal
- »
L]
* Izl <
. ! oo s
0 n
Two-sided 1
ra <zl <
et Tte, p<t<
0 A
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/Uniqueness of Z-Transform

O Z-transform does not uniquely specify the signal in the time domain without ROC.

o From the previous two examples, we see that the causal signal a™u (1) and the
anticausal signal —a™u(—n — 1) have identical closed-form expressions for the
z-transform.

1

Z{o"u(ny} = Z{—anu(—n — 1)} = pp—

O A discrete-time signal x(n) is uniquely determined by not only its z-transform X(z),
but also the region of convergence of X(z).
O The ROC of a causal signal is the exterior of a circle of some radius 7;while the

ROC of an anticausal signal is the interior of a circle of some radius 7
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fExample 3.1.5 (Prokis)
Determine the z-transform of the signal

x(n) =a"un)y+ b"u(—n — 1)

Solution:

oo -1 o0 o0
X)) = Zanz-n + Z bz = E(sz_l)n i Z(b—lz)l
n=0 n=>0 =1

n=—0o0

The tirst power series converges if |()(Z_1 | < 1or|z| > |a|.The second power series converges if
|b_1Z| < lor|z| <|b].

In determining the convergence of X(z), we consider two different cases:

Case 1 |b| < ||: In this case the two ROC above do not overlap, so X(z) does not exist.

Case 1 [b| > |a]: In this case thereis a ring in the z-plane where both power series converge

simultaneously.
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ﬁ%xample 3.1.5 (Prokis)-Cont.

Im(z)
1 lod < 1]
z-plane z-plane
15|
Re(z) = Re(z)
|exl
bl < o
X(z) does not exist
ROC for X(z)
b
(@) (b)
1 1
X 7)) = —
@) I —az7! 1 —pz1
b—u«

B o+b—z7—abzr1

The ROCof X (2) is |a] < |z| < [b].
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Week 10
Slide 140-161
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ﬁ)roperties of Z-Transform

Linearity

x1(n) <— X1(2)
x2(n) < X5(2)
x(n) = a1x1(n) + axxz(n) <> X(z) = a1 X1(2) + &2 X2(2)
Examples 3.2.1 Determine the z-transform and the ROC of the signal
x(n) = [32") — 43" ]u(n)

Solution:

If we define the signals: xi1(n) =2" un) x2 (n) = 3"u (n)

Then x(n) can be writtenas  x(n) = 3x1(n) — 4x2(n)

According to linearity property, the z-transform is

X(2) =3X1(z) —4X,(2)
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fProperties of Z-Transform (Cont.)

We know from the Example 3.1.3,

1
a"u(n) < Tpp— ROC: |z] > ||

By setting @ = 2 and @ = 3, we obtain the z-transform of x1(n) and x2(n)

1
x1(n) =2"u(n) <> X1(z) = ————, ROC: |z| > 2
1-2z"1
1
_xz(n) = 3"14(7!) <—z-> Xz(Z) —_ i"_—sz—_—l, ROC: IZI >3

The intersection of the ROC of X1(Z) and X2(z) is |z| > 3.Thus the overall transform X(z) is

3 4

— ROC: |z] > 3

X = '
@) 1-2z71 137V

Examples 3.2.2 Determine the z-transform of the signals

(a) x(n) = (coswon)u(n)
(b) x(n) = (sinwyn)u(n)
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fProperties of Z-Transform (Cont.)

Solution (a): By using Eulers identity the signal x(n) can be expressed as

x(n) = (cos wgn)u(n) = 1fz)"‘”f’”u(n;) + %e‘j"’@”u(n)

2

Using linearity property of z-transform,

1. .
X(z) = 5 21" u(m)} + %Z{eﬁ’“"onu(n)}

If we set @ = eti®0 (Ja| = [et/®0| = 1), we obtain

e/ y(n) < T e}"’ﬂz‘l . ROC:iz| > 1
eIy () < = e—ljw{}z—l’ ROC: |z| > 1
X@=s—>r 11 ROC: |z > 1

21—eiwoz1 ' 21 —¢jwoz1’
After some algebraic manipulation-
1 —z1coswy
1—2z1cosapg +272°
(b) See the solution in book

(cos won)un) s

ROC: |z] > 1
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ﬁ)roperties of Z-Transform (Cont.)
Time Shifting
o x(n) < X(2)
then  x(n —k) «— 7 ¥X(2)

The ROC of Z_kX(Z) is the same as that of X(z) except for z=0 if K>0, and Z=2 if k<O.

See example 3.2.3 and 3.2.4

Scaling 1n z-domain

i x(n) <= X(z), ROC:r <zl <
then ax(n) < X(a 17, ROC: |a|r] < |z] < la|r

For any constant ‘a’, real or complex.
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ﬁ’roperties of Z-Transform (Cont.)

Determine the z-transforms of the signals
(a) x(n) = a"(coswon)u(n)
(b) x(n) = a"(sin won)u(n)

Solution (a): In example 3.2.2 (a) we have determined the z-transform of (cos won) u(n)

1—-zlcosw
(cos won)u(n) < ¢

, ROC: |z] > 1
1—-2z1coswy + 772 2l
Using time scaling property we get
1 —az lcoswy
a" (cos won)u(n) <— =, 2| > la|
1 —2az-tcoswg + a%z~

Solution (b): In example 3.2.2 (b) we have determined the z-transform of (sin won) u(n)

z~ L sin ay
1—2z1coswy+ 272
Using time scaling property we get

(sin won)u(n) <—s , ROC: |z] = 1

: z az~! sin wy
a" (sinwon)u(n) <—

: z| > la|
1 —2az"Ycoswy + a?z2

e
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ﬁ’roperties of Z-Transform (Cont.)

Time Reversal

It x(n) < X(2), ROC:r < |zl <2
th 1 1
- x{(—n) PILEN X(z_l), ROC: ;; < |z| < Z

Example 3.2.6: Determine the z-transform of the signal x(n) = u(—n)

In example 3.1.3 we have determined the z-transform of unit step signal u(n)

u(n) < -, ROC:|z|>1
1—2z-
Using time reversal property we get
z 1
u(—n) «~—— 7 , ROC: |z] <1
— £
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ﬁ’roperties of Z-Transform (Cont.)

Differentiation in z-domain
If  x(n) < X(z)

dX(z) Both Transform have the same ROC
dz

Example 3.2.7: Determine the z-transform of the signal x (n) = nau(n)

then ax(n) «——» —z

The signal x(n) can be expressed as nx1(n), where x1 m) = a™u(n). In example 3.1.3, we

have already determine z-transform of a™u(n).

x1(r) = a"u(n) < X1(z) = I ROC: |z] > |a|
Using differentiation in z-domain property we get
~1
nau(n) <— X(z) = -zd‘zlz@ = __‘_1;_1)2, ROC: [2] > lal
If we seta=1, we find the z transform of the unit ramp signal
2 z7!
nu(n) <— A=y ROC: |z] > 1

See Example 3.2.8 (Prokis)

@
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ﬁ’roperties of Z-Transform (Cont.)

Convolution of two sequences

If x1(n) < X1(z)
x2(n) < X2(2)
then x(n) = x1(n) % x2(n) <= X(2) = X1(2)X2(2)
The ROC of X (z) is, at least, the intersection of that for X1(z) and X(z).

Example 3.2.9: Compute the convolution X (n) of the signals

x1(n) = {1, -2,1} () = 1, 0<n<S5’
0, elsewhere
The z-transform of X1(n) and x2(n)
X1(2)=1-2z""+z7"

X, =14z 472473 +774 4277

Multiplication of X1(z) and X2(z)

X)) =X1@)X2D)=1-z"1—z 427" x(n) = {%, -1,0,0,0,0, -1, 1}
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/Some common z-transform Pair

TABLE 3.3 Some Common z-Transform Pairs

Signal, x(n) z-Transform, X (z) ROC
1 3(n) 1 All z
9 1
w(n) 1=, lz] =1
3 n .I.
a’uin) e |z| = |a|
4 i [} -1
na'u(n) m |z} = |a|
5 gty 1
au(—n —1) —— lz] < laf
6  —na"u(—n — 1) —-—1-‘13 - |z]
(1—az™h 2l < lal

1 -z COS
1 -2z cosan + 2

R
Z7 sin ey
1—2z"cosey +2 2 12> 1

1—az™! cosay

1 —2az7 ' cosey + gz 2

-1 -
@z sin ay
l—Zaz_Imsrm+azz'2 2l > lal

7 (cosapn)u(n) - 2l > 1

8 (sin wynu(n)

9 (a" cosawgn)u(n) iz| = |a]

10 (a" sinwyn)u(n)
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fPoles and Zeros \

The zeros of a z-transform X(z) are the values of z for which X(z)=0.The poles of a z-transform are the

values of z for which X(z)=00. If X(z) is a rational function, then

-1 -
X(Z) — B(Z) . bﬂ +blz + - --—|—sz| M _ Zgiﬁbkz__k
AR aytazl 4 4 ayzP Yo Azt

X() = B _ bor ™™ M 1 u/b) by /by
A@) apz™ 2N+ (a1/ag)N T+ Fay fag

v We can express X(z) by poles —zeros

plot in the complex plane, which shows
_ B@@) _ _{’E many E—z)(z—z22) (2 — zm)

the location of poles by cross (X) and X{(z)

AR ao (z—p)z—p2)-(2— pn)
location of zeros by circle (O) Y
v’ The multiplicity of multiple order [Te-=
poles or seros is indicated by a number X @ = G2 I
close to corresponding cross or circle. E{z ~ P

v Obviously, by definition, the ROC of a z-transtorm should not contain any poles.
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fPole—zero Plot

Example 3.3.1

Determine the pole—zero plot for the signal

x(n) =a™u(n),a>0

The z-transform of the signal

1
X(z) = = , ROC: |z] > a

1 —az! Z—da

Thus X(z) has one zero at Z; = 0 and one pole at

p1 = a. Note that the pole p1 = a is not included in

the ROC since the z transform does not converge at a

pole.
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fPole—zero Plot \

Example 3.3.2
Determine the pole-zero plot for the signal
aq™ 0<n<M-=-1 Where, a>0
x(n) = ’ -
0, elsewhere
The z-transform of the signal
X@ = Sty = L@ e
= az = —
(2) — 1 —az? M-z —a)
H

Since a>0, the equation Z M = M has M roots at

. g pllnkiM -0 — ¥
Ik = ae k=01, .., M—1 Assume, M=8

The zero Zg = @ cancels the pole at z=a.Thus

Izt = a
' M -1 pol
(z—z1)z —22) (& —Zm-1) EA P
X(Z) - M1 ~ r{’
¢ — Re(z)

Ay

Which has M-1 poles and M-1 zeros. Note that the ROC is the '
enter Z-plane except z=0 because of the M-1 poles located at the

~
Y

origin. 1 Pole and 1 zero
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6ole location and Time-Domain Behavior for Causal Signals
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Figure 3.3.5 Time-domain behavior of a single-real-pole causal signal as a function of
the location of the pole with respect to the unit circle.
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6ole location and Time-Domain Behavior for Causal Signals (Cont.) \
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Figure 3.3.6 Time-domain behavior of causal signals corresponding to a double (m = 2)
real pole, as a function of the pole location.
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A causal real signal with double complex-
conjugate pole in z-transform

z-plane

6ole location and Time-Domain Behavior for Causal Signals (Cont.)
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Figure 3.3.7 A pair of complex-conjugate poles corresponds to causal

signals with oscillatory behavior.
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‘1

nversion of the z-Transform

There are three methods for evaluating the inverse z-Transform
1) Direct evaluation by contour integration.

2) Expansion into a series of terms, in the variables z ~land z.

3) Partial fraction expansion and table lookup
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mlverse z-Transform by Power Series Expansion

EXAMPLER 42

Determine the inverse z-transform of

X(2) = 1 when
1-15z1405z2 (&) ROC: |z] > 1

(b) ROC: |z] <05

Since the ROC is the exterior of a circle, we expect x(n) to be a causal signal. Thus we seek a power

series expansion n negative power of z.

1
X(z) =
(2) 1 —27-1 44,2
2 2
1-3z1+1z2)4+32-1-17

_ 2 2 2 2

1—%2_1+%Z_2

32—1_12—2

— 142 2

3 1

1-5z71+5272
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‘1

nverse z-ITransform by Power Series Expansion (Cont.)

32—1 (1_§Z_1 +lZ—2)_lZ—2+2Z—2_3Z—3 3 ZZ_2_32_3
_ 2 2 2 2 4 4 _ 2 1 4 4
=1+ 3 T _1+ZZ + 3 T

S 1 _ _ 9 1412
1—221+222 1 52 +ZZ
7 -2 3 -1 1 -2 3 -3 21 -3 7 —4
3 Z 1—5z"'"4++2 — =772+ zZ7°—=Z
_ 2. 142,22
1 22 +ZZ
15 3_7 4
Z70 —52Z
—1+3714+ 724 8 81
2 4 1—%2—1+§Z—2
7 4 45 _, 15 _q
3 7 15 —aZ + AR VA
=145z 1 +-27%4+52z73+ 8 16 16
2 73 3 3 .1
1—22 +22
=143z 1477724153431 44
2 4 8 16
_ 1 3 7 15 31
x(n)_{/r;zrll‘r 871 ;}
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ﬁnverse z-Transform by Power Series Expansion (Cont.)
(b) In this case the ROC is the interior of circle. Consequently this signal x(n) is anticausal.To obtain

a power series expansion in positive powers of z, we perform the long division in the following way

272 4+ 62° +142% +302° +622° + -

72— 37141 )1
1 —3z +27°
3z — Zzz
37 — 972 + 62°
722 — 62°
772 —217° + 147°
157° — 147*
1523 — 45z* + 307°
i 314 — 30z°

1
1—3z71 4 1772

x(n)=1{ 62,630,14,6,2,0, ?}

X(z) = =277 +62% + 147 +302° + 625+

@




ﬁnverse z-Transform by Partial-Fraction Expansion

Example 3.4.8: Determine the inverse z-transform of

B 1 if (@) ROC: |z] > 1
X(z) = 1 )
1 —-1.5z71405z (b) ROC: |z{ <05
Solution: (¢) ROC:05<|z] <1
2
Z
X —
®= 575705
X(Z) _ < Al A2

z (z—1D(E-05) =z—1+z—0.5

2=(2—-05A1+ (z—- DA,
Setting z=1, in the above equation, we get
1=1-054; So A =2

Setting z=0.5, in the above equation, we get

0.5=05-1A, So, Ay = ~1
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mlverse z-Transform by Partial-Fraction Expansion (Cont.)

X(z) 2 1 X() 2 1
-— —_ Z ot —_—
z z—1 z-05 1—z1 1-05z"1
I.(a) z | > 1, the signal x(n) is causal, both term of above equation will be causal terms
ROC

dn) =2D"u(n) — 0.5"u(n) =(2 — 0.5" u(n)

(b) ROC |z | < 0.5, the signal x(n) is anticausal, both term of above equation will be anticausal

terms:

x(n) =-2()"u(—n—-1)+ 0.5"u(—n —1) = (0.5" = 2)u(—n — 1)

(c) ROC 0.5 < |z| < 1, which implies that the signal x(n) is two sided.

Thus one of the terms corresponds to a causal signal and the other to an anticausal signal.
Obviously, the ROC is the overlapping of the region |z| > 0.5 and 1Z| < 1. Hence the pole 0.5

provides the causal part and pole 1 anticausal part.

x(n) = -2(D)"u(—n —1) — 0.5™u(n)

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




/ﬂlverse z-Transform by Partial-Fraction Expansion (Cont.)

Practice Problem:

Example 3.4.9: Determine the causal signal x(n) whose z-transform is given by

1+2z71
x(2) = 1—2z1+4+0.52z72

Example 3.4.10: Determine the causal signal x(n) having the z-transform

1
A A ey p—
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Chapter Intended Learning Outcomes

(i)Ability to implement finite impulse response (FIR) and infinite impulse
response (IIR) systems using different structures in terms of block diagram
(or signal flow graph).

(ii)Ability to determine the system transfer function and difference equation

given the

corresponding block diagram (or signal flow graph) representation.
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/ FIR System
Finite Impulse Response (FIR) System

In signal processing, a finite impulse response (FIR) system is a system whose impulse response (or

response to any finite length input) is of finite duration, because it settles to zero in finite time.

by, 0<n<<M-1

h(n) = 0, otherwise

where M is some positive integer.This is called a finite impulse response (FIR) system because the non-
zero part of the impulse response (D) is finite in extent. Because of that property, the convolution sum

becomes a finite sum,

M-1

y(n) = h(k)x(n —k)
k=0
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f Structures for FIR System

In general, FIR system is described by the difference equation

M-1
y(n) = brx(n—k)
k=0
Or, equivalently, by the system function
M-1
H(z) = by z7k
k=0

Where the coefficient {Dy}, is identical to the unit sample (impulse) response of the FIR system, that
18
b 0<n<M-1
h(n) = ;" -
W=y, otherwise

Methods for Implementing FIR System

1) Direct form

2) Cascade form realization

3) Frequency sampling realization
4) Lattice Realization
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f Structures of FIR System: Direct form realization

Direct form Realization

j‘F'}-"' ral - | . z—1 - z"l
i hO) 1 A1) { A2) 1h(3) ! hM-2) Y h(M-1)

wn)

v' This structure requires M-1 memory locations for storing the M-1 previous inputs and has a
complexity of M multiplications and M-1 additions per output points.

v" The direct-form realization is often called a transversal or tapped-delay-line filter.
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f Structures of FIR System: Direct form realization

Direct form realization of linear—phase FIR System

xin)
e o ! g || TSI -
Input "
|
£ o i —] o] g 2=
M-3 M-
Y h(0) Y A(D) h(2) h( - ]" h e 1

Qutput

v" When the FIR system has linear phase, the unit sample response of the system satisties either the
symmetry or asymmetry condition h(n) = ih(M -1 - n)
v’ For such as system the number of multiplications is reduced from M to M/2 for M even and to

(M-1)/2 for M odd.
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/ Problems on Direct form realization of FIR System

Problem: Consider an FIR system with system function
@ H(z)=1+4+3z"142z3 -4z
by Hz)y=1+21z1432724273 41,4

4 2 4 2 4

Sketch the direct form realization of the system.

@ ) ! 7z 21— 71

+ =+ F{-l:—} »+— y(n)
(b) The system is a linear phase FIR system. It can be expressed as

— 1, _ — 3. —
H(Z)=%(1+z 4)+E(Z 14z 3)+Zz 2

x(n) 2 e R

1/2
1;41 [ 1

Z Tl Z e

h!
A
3/4
5 !
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a

Problems on Direct form realization of FIR System

Problem:

(1) Determine a direct form realization for the following linear phase discrete time system

h(n) = {1,2,3,4,3,2,1}

(a) R

h(n) = {1,2,3,3,2,1}

b
(b) 1

(2) Consider an FIR system with system function

H(Z) =1+ 2.882z7! + 3.40482 2 + 1.74z73 + 0.4z~*

Sketch the direct form realization of the system. How many additions and multiplications

instructions are required per output point? Also determine the number of memory block.
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/" Structures of FIR System: Cascade form realization I

Cascade form structures of FIR System

In cascade realization of FIR system H(z) is factorized into second order FIR system so that

M-1 K
H(2) = brz ™k =  Hy(z)
k=0 k=1

where  H (2} = byo + bt]z—l -+ bkzz_l k=1,2,...,.K

and k is the integer part of (M+1/2).

x(n) = x,(n} ' ¥in) = ¥y5{n) = Yy _yn)= y(n) = y(n)
X5(n) . xiin) Xp(n}
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/ Structures of FIR System: Cascade form realization

Why second-order polynomial instead of first-order polynomial?

The zeros of H(z) are grouped in pairs to produce the second-order FIR systems of the form

A (z) =bt{1+bﬂzh1 +bkzz_2 k=1,2,.... K

It is always desirable to form pairs of complex-conjugate roots so that the coefficients {by;} in the
second order subsystems are real valued. By this way we can avoid the complex multiplications. On the
other hand, real-valued roots can be paired in any arbitrary manner. The cascade-form realization along

with the basic second-order section is shown below:

Xp(m)

-

l-—-—z_

This is the basic building
> block to  implement
bk: cascade form FIR

structures

I Bro
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a Example on Cascade form realization of FIR System I
Example: Determine a cascade form realization for the following discrete time system
with system function H(Z) i 5= il 2 + o5 L o

Solution: To factorize H(z), we use the MATLAB command roots([1 1 1 1 1]) to solve for the roots (or

use calculator to find the roots of the polynomial H(z)):

0.3090 + 0.95111
0.3090 - 0.95111
-0.8090 + 0.58781
-0.8090 - 0.58781

H(z) = (1—1[0.309 4 j0.9511]27") (1 — [0.309 — 50.9511]z~") x
(1 — [—0.809 + 50.5878]z") (1 — [—0.809 — j0.5878]z"")

To get the second order subsystem with real-valued coefficients, we group the sections of complex
conjugates together

H(z) = (1—0.61827" +272) (1 +1.61827" + 27?)

= (1+1.61827" 4+ 272) (1 — 061827 + 272)
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ﬁixample on Cascade form realization of FIR System (Cont.)

H(z) = (14+1.61827"+277) (1 —0.618z"" + 277)

1 1
. - 1 . — @__)
x(n) l )@ l vin)
z~1 z 1
1.618 T -0.618 ;I-
¥ h
z~1 z™1
1
» ! »
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/ IIR System

If the impulse response of a system is infinite, the system is called IIR system.

The impulse response is “infinite” because there is feedback in the filter; if you put in an impulse (a
single “1” sample followed by many “0” samples), an infinite number of non-zero values will come
out (theoretically.)

In general, IIR system is described by the difference equation

o M
ymy == ay(n—k) + ) _ bex(n—k) "
k=1 k=0

Or, equivalently, by the system function H (z) =

Methods for Implementing IIR System

1) Direct form (Direct form I and Direct form II)
2) Cascade form realization

3) Parallel form realization

4) Lattice structures

5) Lattice-ladder structures
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f Structures for IIR System: Direct form I \

Direct form structures (Direct form 1 realization)

------------------------------

— -
1 z-l
M . : b,
H(z) = Zbaz“
k=({ z-!
5 by
R ]
H(2) = N ¢! 5 :
1+ Za;z'* 5 2 :
k=1 ' E
This  structure requires M+N+1 : | ' |
Hilicat . ;' Bt N e :
multiplications, M+N additions and | \J
. e ] . 2= .
M+N+1 memory locations. v | by o —ay I ';
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4 Structures for IIR System: Direct form II

Direct form structures (Direct form I1 realization)/ Canonic Form

y(n) = —aiy(n — 1) + box{(n) + byx(n — 1) 7!

The nonrecursive part of the system

A

x(m) by v(r)
Let us consider a first order system —{ o+ +

}’(n)h

v(n) = bpx(n) + b1x(n — 1)

wln-1)

y(n) = bow(n) + byw(n — 1)

(©
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x(n) w(n) by y(n)
The recursive part of the system ( " ) I i} ( i :
Y
y(n) = —ary(n — 1) + v(n) <! a
However, it is observed that if we interchange the —a, b,
order of the cascaded LTI system, the overall wn=1) w(n—1)
(b)
system response remain the same. Thus if we
x(n) N w(n) N ¥n)
) . N - i <+ ——
interchange the order of the recursive and ./ by
nonrecursive system, we get ‘ 7]
: - b
wn) = —aqwn -1 +x(x) 2 .




4 Structures for IIR System: Direct form II

Direct form structures (Direct form 11 realization)/ Canonic Form
. . . x(n) by
The difference equation to describe the + * —
general [IR system can be written as: =1
M -a, by
) o
V(n) = bpx(n — k) !
k=0 -1
N —a; by
i i
y(n)y=—  ary(n—k)+V(mn)
k=1
Interchanging the order of recursive and :
nonrecursive part we can write
N —ay_ by -1
= e ] 4
wh) = — arw(n —k) + x(n) 1
k=1 z=|
M —IEIN bh'
=it -
y(n) = bw(n —k)
=0 Direct form II (considering N=M)
Multiplications and additions are same as direct form I. But the required memory location is {M,N}
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/ Structures for IIR System: Problem \

Problem: For the following system
3 1 1
ym) — Zy(n -1+ §y(n —2y=xm)+ §x(n —1)

(a) Determine its system function.
(b) Obtained the direct form I and direct form II structures.

Solution:

1+ %Z_l
a) H(z) = 3 T
1—-%z1+g5z72
4 8
b) feros Poles Poles Zeros
x(n) ' ’@ l > y(n) x(n) 4@* 1—?@; > y(n)
z 1, 7z 1 z71
1/3 1/3
-
L 3/4 ¥ o
! \ 4 ¥
—1 . | 71
“1Z 18 |2
-1/8 )
Direct form I Direct form II
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/ Structures for IIR System: Problem \

Problem: Draw the block diagrams using the direct form I and canonic forms for the LTI system

whose transfer function is:

R

H2 = ,
(%) el =00z
Solution:
z[n| l - + l > y[n]
Z_l Z_l
-3 —0.3
Direct form I ! > - i
Z_l Z_l
2 0.1
> -
-1
Canonic form/ 03 Z —3
Direct form II - i >
Z_l
9

0.1 |

© )
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/ Structures for IIR System: Cascade form structures

Cascade form structures

We can factorize the numerator and denominator polynomials of IIR system function in terms of

second-order polynomial system functions as:

M
> b k
fcsl) | Without the loss of generality
H(Z) — — N = Hy(z) we assume that N = M
j : s k=1
L.’:

Where k is the integer part of (N+1)/2. H(Z) has the general form

byo + b1 Z_i -+ bﬂz"z

Hi(z) =
14 anz™! +apz?
x(n) = xy(n) x;(m) Xx(n)
H\(2) - Hy2) el Hy(z) f——
¥ (n) ¥o(n) ¥n)
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/ Structures for IIR System: Cascade form structures \

Cascade form structures

bro + biq 4 buZ"z

Hi(z) =
14 anz~ ! +apz?
L G . b0 =™

=1

— gy by

+ - o -
I'I

—G4y bia

- .

Each of the second order subsystem can be realized in either the direct or canonic form. Nevertheless,

the canonic form is preferred because it requires the minimum number of delay elements.

K: Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV




@tructures for IIR System: Cascade form structures Problem \

Example 7.3.1 (Prokis): Determine the cascade realization of the system described by the

system function
4 101 —%z—l) (1 —%z‘l)(l +2z71
H(z) = 1

(-3 ) -5 (- Gip) (1 g-ipe)

To form second order system we can make pair of 1t order system. One possible pairing of pole and

Solution:

zeros is given below where the pairs are formed in such way that the coefficients are real-

— 2,1 3,-1 _ ,=2
H(2) ki o) = — 2 T ) = 10Ky (D H (@)
1= » _ 22) = ) = DH (2
— ;: 1 4 332 2 1 =zt %z-z i
s * () ) 4
z-1 -t
7 L2 3
8 3 I __2
{
! A
_3 21
32 2 -1
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a

Parallel form structures

Structures for IIR System: Parallel form structures

™

A parallel—form realization of an IIR system can be obtained by performing a partial—fraction expansion of

H(z) assuming that N = M. By performing partial-fraction expansion of H(z), we obtain the result

Where {pi} are the poles, {Ak} are the coefficients in

the partial-fraction expansion, and the constant C is x(n)

defined as C = b—N
an

The parallel form structure consists of a parallel bank of

single pole filters.

(-,

H(2)

Ho(z)

Hy(z)
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/ Structures for IIR System: Parallel form structures \

Parallel form structures

In general, some of the poles of H(z) may be complex valued. In such a case, the corresponding
coefficients Ay are also complex valued. To avoid multiplications by complex numbers, we can
combine pairs of complex conjugate poles to form two-pole subsystems. Pairs of real-value poles are
also combined arbitrary manner to form two-pole subsystems. Each of these subsystems has the

form

Ho(z) = bio + b1z x(n) . byo ¥iin)
k 1+ apz7 !+ agz? jL./ 1

The overall function can be expressed as:

[

K
Hz)=C+ Y H()

C —dy) bkl
k=| +

Where K is the integer part of (N+1)/2 I

Direct form II (canonic) structure of the second-order

section in a parallel IIR system realization is shown in z~!
Fig. which is the basic building block of parallel IIR —a,

systern. _—
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/ Structures for IIR System: Parallel form structures Problem
Problem: Draw the block diagram using parallel form with second order subsections for a LTI system

whose transfer function is:

F gl =t
H(Z) 5

E TR

Solution:

Following the long division we obtained:

21 + 327}

H(z)=-20+ _ . :
(2) l=eligs =0 1=
—920
-
T —
. o
+ - ¢ - yn]
=1
—03 |° 3
- o
\4
,Z_l
0.1

-
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f Structures for IIR System: Parallel form structures Problem

Problem: Draw the block diagram using parallel form with 1st order subsections for a LTI
system whose transfer function is:
9

= 1 — 35-1g 952
1 +0.3271 —0.1272

H(z)
Solution:

Following the long division we obtained:

@ Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

214 3271
H(z)=-20+ — —
1403271 —0.1272 o0
-
This expression is further expanded in I[n] — E
7
partial fraction to get first-order sections as + > l > y[n}
Th T2 1
7 = —05 © ] T2
H(z)=-20+ ——+ -~ ~— 7
14+ 0.9z 1-0.2z n . l .
-1
02 |°
- |

™




ﬁtructures for IIR System: Parallel form structures Problem

Example 7.3.1 (Prokis): Determine the parallel realization of the system described by the

10 (1 — %z‘l) (1 — %—Z—l) (1+2z71)
H(z) = 3 1 — 1
(1 2[2_1) (1—_ _1){1—(2"‘]2)2_1}{ (2—12)2_1}

To obtain the parallel form realization, H(z) must be expanded in partial fractions. Thus we have

A A- A Al
H(:)= ; ‘+ ]:- > 1+ I 3'1 |
]_EZ- ]"_H{.. 1—{2"1"} ):.._ 1_{E_J§}:-

The above expression can be written as:
1 2 1 1 1 1 .1
_ -1 _ _ -1 -1 — _ -1 _ (= T\, —1 1— _—]1_)z-1
10(1 52 )(1 2z )(1+2z ) A1K1 57 ){1 G+ig2 }{ =) }]
3_1 1 1 1 1 1 1
+A4, 1—ZZ {1—(—+]—)Z }{1—(——]—)2 }

+A3[<1—i )(1—12_1){1—(——]; }]+A3[(1—22_1>(1—12_1){1—(2+]; 1}]

After some arithmetic we find that

Ay=293. A =—1768, As=1225— j1457. A% =1225+ j14.57

&: Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV
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Solution:
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Recombining pair of poles we get:

Structures for IIR System: Parallel form structures Problem
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4 Fourier Analysis

Fourier analysis convert a time domain signal into frequency
domain signal. Can be divided into 4 types:

a) Aperiodic continuous.

b) Periodic continuous (Fourier Series).
c) Aperiodic Discrete (DTFT).

d) Periodic Discrete (DFT)
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a DFT

Discrete Fourier Transform

The discrete Fourier transform of a discrete-time signal x(n) is defined as

N— _.2mnk .
X(k) = x(n)e J N K=0,1,..... ,
n=0
The Inverse Discrete Fourier Transtform (IDFT) is defined as
N-1
1 jZnnk
x(n) = N X(ke’ N n=201,...... N-—-1
n=0
DFT

x(n) = X(k)

Time Domain IDFT Frequency Domain

@
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f Difference between DTFT and DFT

X(w) = x(n)e=jon

n=—oo

In DTFT frequency domain (w) is
continuous.

w changes from 0 to 277, but it is continuous.

N—1
_2mnk
X(k) = x(n)e”’ N
n=0
In DFT frequency domain (w = Zﬁk) is

discrete.

0] changes from O to 27 taking 0 to (N-1)

number of samples.
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f The DFT as a Linear Transformation

N—-1
JZnnk
The N-Point DFT is defined as X(k) = x(n)e N
n=0
N—-1
The above expression also written as X(k) = x(n)Wnk
n=0
h _jAnnk lled the twiddle
Where, W](/lk —e ) N Is called the twiddle factor

IfN=4 we say it is 4-Point DFT. For N=4, the above expression can be written as

3
X(k)=  x(m)Wpk
n=0
X0y = x(0y W40 + x(l)Vl{LO + x(Z)Wf + x(3)Wf

X1y =x0, W40 + x(l)l/l/41 + x(Z)W42 + x(3)W43
X(Z) = x(O) WO + x(l)W2 + x(Z)W4 + x(3)W6
( y =% )WO + x(l)W3 + x(Z)W6 + x(3)W9
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/ The DFT as a Linear Transformation (cont.) \

X(0)1 WP WP WP WP rx(0))
X(1) wy wyp Wi Wi [x()
X)) [wp wg wE wpl|x2)
X)) [(wp wE owe wp|lx(3)

X071 1 1 1 17x(0))
XO|_[r = -1 j [|x@®
x| |1 -1 1 =1[|x®@ ,
. k+5
X3 11 -1 —lxE). Wy 2= -Wk » Wk? = —wk

Note that for 4 point DFT, the computation of each point of DFT can be accomplished by 4 complex

multiplication and (4-1) complex additions.

Total computation for 4-point DFT, Addition= (4-1)X3 and Multiplication= 4X4
Hence the N-point DFT values can be computed in a total of N 2 multiplications and N(N-1) complex

additions.
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/ The DFT as a Linear Transformation (cont.)

X0 1 i1 1 1 1 1r
.. 0
X(1) 1 wl w2 . wh-1 (9
X(2) : y ZI(VN 1) *(1)
1 Wi Wi .o Wyt 2
Xx3) |= N N N x(2)
: ' 1\}_1 2(1.\/—1) o (N-1)(N-1) N.— 1
xv—1l 11 WA W .. W Lx( ).
The N-point DFT may be expressed in matrix form as: Xy = Wyxy

Where Wy is the matrix of the linear transformation. If we assume that the inverse of Wy exists,

we obtain Xy = WK}X N

4 N—-1
The expression of inverse DTFT can be expressed as x(n) = _;F Z X (k) Wﬁk” ’
*
X =y WXy n=01..N~-1
1
W—l — __W*
N N N
*
WyW = NIy
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/ Problem on DFT

Example 7.1.3: Compute the DFT of the 4-point sequence
x(n)={0,1,2,3}

Solution:

The matrix of the linear transformation for 4-point DFT can be expressed as

W40 W40 W40 W40 ] 1 1 1 1

W, = W40 W41 W42 W43 |t = -1
lwpowz owp owsl |1 -1 1 -1
W40 W43 W46 Wf | 1 ] —1 —J

Now, Using the matrix expression Xy = WXy, we can calculate DFT of the above sequence as

X0 (1 1 1 17[01 [0+1+24+37 [ 6
x| (v = -1 1] [o-j-2+3j| [-2+2
x| 7l -1 1 —1ffz]|To—1+2-3|"| -2
x3) 1t j -1 =3l lo+j-2-3j] |-2-2j
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s

x(n).

@

Solution:

Problem on IDFT

X(k)={6,-21+2;,-2,-2-2j}

The matrix of the linear transformation for 4-point DFT can be expressed as

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

Problem:The 4—point DFT of a discrete time sequence x(n) 1S given below. Determine

1 1 1 17 1 1 1 1
w) wl wz wp 1 - -1 1 1 —
w.=|"% 4 4 i _ . _ j j
Tlwp owz owg owg| |1 11 -1 SoWr=[1 21 1
we owp ows wel 11 1 ] 1~ -1
Now, Using the matrix expression Xy = 1NWX,X N, we can calculate IDFT of the above sequence as
x(0)7 1 1 1 1711 6 [0 07
x(1) _ l 1 j =1 —jl|-2+2 _ 1 41 |1
x(2) 411 -1 1 -1 —2 418 |2
x(3) . 1 - -1 j1l-2-2j] 12] |3

Problem: Compute the convolution of the sequences x1(n) = {1,2,3,1} and
x2(n) = {4,3, 2,2} using DFT and IDFT

™




f Multiplication of Two DFTs and Circular Convolution

Suppose that we have two finite-duration sequences of length N, x1(n) and x2(n).Their respective

N-point DFTs are N-1
Xi() = Y mme PN, k=0,1,.... N1
n=0

N-1
X5 (k) = Z xp(n)e 12FkIN k=01,...,N—1

n=({)

If we multiply the two DFTs together, the result is a DFT say X3 (k), of a sequence X3 (n) of length N.

Let us determine the relationship between x3(7) and the sequences x1(n) and x2(n).

X3(k) = X1 (k) X2(k), k=0,1,...,N—1

The IDFT of X3 (k) is: .
1 _ :

xa(m) = — > Xa(kye/ /N
N k=0

N-1
1 1 "
= § :Xl (k) X, (k)e/27km/N
k=0
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Multiplication of Two DFTs and Circular Convolution (Cont.)

Putting the value X'1(k) and X2(k)

BRSIES A1 2rki/N | ,j2zkm/N
| —j2nkn/N — J2akm
x3(m) = v Z Z.xl(n)e f2mkn] Z.xz(l)e e
k=0 Lrn=0 [=0
1 N—-1 N-1 N-1 . NN
= =S aum Y @ | Y T
N n=0 =0 k=0
We can write A
N1 N, a=1 Where, j
Z at = [ 1—aV a1 a4 = eﬁ;r(m—n—l)/N
k=0 l—a ’ =1

if (m-n-1) is a multiple of N, i.e.
m—n—1=pN,pisaninteger
abecomes a = /2P =1
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Multiplication of Two DFTs and Circular Convolution (Cont.)

aV =1, for any value @ # 0

aV = e/2r(m=n=D = cos(2n(m —n —1)) + jsin(2e(m —n—1)) =1

=, [N, I=m—n+pN=(m—n)y, paninteger
0, otherwise

k=0

Finally we can write,

N-1

xam) =Y ximx(m—n)y,  m=01 ... N-1
j1=()

The above expression has the form of a convolution sum. However it is not the ordinary linear
convolution which relates the output sequence y(n) of a linear system to the input sequence x(n) and
impulse response h(n). The above expression involves the index (M — n)y and is called
circular convolution. Multiplication of DFTs of two sequences is equivalent to the

circular convolution of the two sequences in the time domain.
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/ Problem on Circular Convolution

Problem: Compute the circular convolution of following two sequences

am =12,1,2,1}

xa(n) = {%‘2.3.4}

Solution:
N-—1
xam) =Y ximxa(@n—m)y, m=01...,N—1
=0
3 3
x3(0) = ) x1 W xa((=m)N ) =Y mrn(l—m
n={ n=0
3 3
x3(2) = Z x1(n)x2((2 — 1))a x3(3) = Z x1 ()x2((3 — n))a
n=0 n=0

We can represent the sequences in graph where the samples are placed in counterclockwise direction

in a circle
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/ Problem on Circular Convolution (Cont.) \

() =1 x(1) =2
.I]_(2) =2 xl(U) =2 IZ(E) =3 .xi(O} =1
(3 =1 @ x(3)=4
x(3) =4 4
x(2)=73 Hh=1 6 2
xy(1) =2 2
Folded sequence ®) Product sequence
x3(0)=2+4+6+2=14
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Problem on Circular Convolution (Cont.)

x(0) = 1 1

.x2[3) =4 IE(]} =72 8

e

X(2y =3 3
Folded sequence rotated by one unit in time © Product sequence
C
x3(1)=4+1+8+3 =16
xy(1)=2

x(0) =1 xn(2)=3 : 2

.x2(3) =4
Folded sequence rotated by two units in time @ Product sequence
x3(2)=6+2+2+4=14
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/ Problem on Circular Convolution (Cont.)

x2)=3 3
x(1)=2 x(3)=4 4
=1 ' 1
Folded sequence rotated by three units in time © Product sequence
e

x3(3)=8+3+4+1=16

x3(n) = {14,16, 14,16}
T
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/ Alternative method of computing Circular Convolution \

Problem: Compute the circular convolution of following two sequences

.Il(ﬁ] - {%1 1: 2: 1}

xa(n) = {%‘2,3.4}

Solution:
x3(0)1 2 1 2 1111 [2+2+6+4] [14]
D _|1 2 1 2ff2[_[1+4+3+8|_[16
x3(2) 2 1 2 1|13 24+2+6+4 14
x33)] 11 2 1 2]14] l[1+4+3+8] [16

x3(n) = {14,16, 14,16}
1
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Zero padding is a simple concept, it simply refers to adding zeros to end of a time domain signals to

increase its length.

Zero padding

™




/ Computation of linear convolution by circular convolution

Compute the linear convolution of the following two sequences by circular
convolution

x(n) = {1, 2,3,1) hin) = {1, % 1, -1}

Solution:

Length of convolution sequence = 4+41=7

Start of sequence= min (min(x(n)) min(h(n))) =-1

After zero padding: x (n) = {1,2,3,1,0,0,0} h(n) ={1,2,1,-1,0,0,0}

0) T
vyEDT 10 0 001 03 2971 1
y(0) 2 1.0 0 0 1 3|2 4
y(1) 32100 0 1(|1 8
y2)|=[1 3 2 1 0 0 o|l-1|[=]|8
y(3) 01 3 2 10 0f]o 3
y(4) 0 01 3 2 1 o0flo —2
ys)| oo o 13 2 1ol L-1

y(n) = { Cony 09 05 19 f]!'s 85 89 39 _"29 *1s 0; 03 }
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Class Test Next Week
Syllabus: Slide 121-213
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Week 13
Slide 213-224
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/ Fast Fourier Transform (FFT) \
A Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete Fourier Transform
(DFT) and inverse of DFT. FFT requires a smaller number of arithmetic operations such as

multiplications and addition than DFT (i.e. FFT requires lesser computation time than DFT).

No of computations in direct DFT Computations in FFT

e T2
Multiplications: N Multiplications: b log,(N)
2

Additions: N(N-1)
Additions: N log,(N)

For, N = 106

Total mathematical operations required to find DFT

Direct DFT: 102 4+ 106(10% — 1) = 2 x 1012

FET: (5 X 10° X log,(108) + 10° X log,(10°) = 24 x 10°

If each mathematical operation needs 1 ns to compute by digital computer,

Direct DFT needs 2 X 101%2ns = 2 x 103s = 2000s

@ Whether FFT algorithm needs 24 X 106ns = 24 X 107 3s = 0.024 s
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f Fast Fourier Transform (FFT) Algorithm \

v’ Direct computation of the DFT is less efficient because it does not exploit the properties of
symmetry and periodicity of the phase factor Wﬁk
k+N/2 k
Symmetry property: Wy = —wy

Periodicity property: Wil = Wi

v FFT algorithms exploit the above properties of phase factor to reduce the number of
mathematical calculations to compute DFT. There are many FFT algorithm which involves a

wide range of mathematics.

v" On the basis of decimation (decimation means decomposition into decimal parts) process

FFT

algorithrns are two types.

v Decimation-in-Time FFT algorithm: The sequence x(n) will be broken up into odd

@numbered and even numbered subsequences.This algorithrn was first proposed by Cooley and
Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV
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Cooley-Tukey Algorithm
N—1

xpe ' N

= X, Wk
TN

"k=0,1,..

SN—1

2TC
Where, W = e/ w

(2n+1)k
Xont W'y

)

|

Even sequence
X0, X2, X4, X¢
N
2 -1

= X WAk +W

n=0

@

k
N/2 N N/2

f

Odd sequence

X1, X3, X5, X7

N =

-1
Wnk
X2n+1

n=0

f The