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Digital Signal Processing (EEE-0714-3107)

3 Credit Course

Class: 17 weeks (2 classes per week)
Total Class Duration: 1 hrs.
Total=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:
Students  with  more  than  or  equal  to  70%  attendance  in  this course 
will be eligible to sit for the Semester End Examination (SEE). SEE 
is mandatory for all students.
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Continuous Assessment Strategy

Quizzes

Assignment

Presentation

Altogether 4 quizzes may be taken 
during the semester, 2 quizzes will be 
taken for midterm and 2 quizzes will
be taken for final term.

Altogether 2 assignments may be 
taken during the semester, 1 
assignments will be taken for 
midterm and 1 assignments will be 
taken for final term.

The students will have to form a 
group of maximum 3 members. 
The topic of the presentation will 
be given to each group and students 
will have to do the group 
presentation on the given topic.
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CIE- Continuous Internal Evaluation (90 Marks) SEE- Semester End 
Examination (60 Marks)

Bloom’s
Category

Tests

Remember 10
Understand 10
Apply 15
Analyze 10
Evaluate 10
Create 5

ASSESSMENT PATTERN

Bloom’s
Category
Marks

Tests 
(45)

Quiz
(15)

External 
Participation in 
Curricular/Co- 

Curricular 
Activities (15)

Remember 10 09 Bloom’s Affective 
Domain: (Attitude 
or will) 
Attendance: 15
Viva-Voca: 5
Assignment: 5
Presentation: 5

Understand 8 06
Apply 10
Analyze 5
Evaluate 7
Create 5
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COURSE LEARNING OUTCOME (CLO)

6

CLO-1

Understand the fundamentals of digital
signal processing, including signal and
system concepts, classification, and
analog-to-digital conversion techniques.

CLO-2
Analyze different types of signals, their
representations, and key properties such as
energy, power, and manipulations.

CLO-3

Apply mathematical tools like
convolution, Z-transform, and frequency-
domain analysis to solve signal processing
problems.

CLO-4
Design and implement digital filters (FIR
and IIR) and apply advanced techniques
like FFT for practical DSP applications.
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Course learning outcomes (CLO): After successful completion of the 
course students will be able to -



SYNOPSIS / RATIONALE
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Digital Signal Processing (DSP) is a critical field in electrical
engineering, focusing on the manipulation and analysis of signals
using digital techniques. This course provides students with a
fundamental understanding of signal processing algorithms,
methods, and applications. In an increasingly digital world, DSP
plays a vital role in various domains such as telecommunications,
audio processing, image processing, and biomedical engineering.
By mastering DSP principles and techniques, students gain the
skills necessary to design, implement, and optimize digital signal
processing systems, contributing to advancements in technology
and innovation across industries.



Course Objective
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• Understand fundamental concepts and principles of digital signal
processing.

• Analyze and interpret signals in time and frequency domains.
• Design and implement digital filters for signal processing applications.
• Apply Fourier analysis and Z-transform techniques to analyze signals.
• Design FIR & IIR Digital Filters & analyze.



Sl. Content of Course Hrs CLOs
1 Introduction to DSP: Signals, systems and signal

processing, Basic Elements of DSP, Advantages and
Disadvantages of DSP, Application of DSP, Types of
Signal, A/D Conversion, Problems

4 CLO1, 
CLO2

2 Discrete Time Signals & Systems: Representation
of discrete time signals, Some elementary discrete
time signals, Classification of discrete time (DT)
signals, Manipulation of DT signals, Classification
of Discrete Time System, Convolution sum,
Correlation

4 CLO2, 
CLO3

3 Analysis of DT Linear Time-Invariant System
Sampling theorem, aliasing, quantization error,
Nyquist rate problems.

4 CLO2, 
CLO3

COURSE OUTLINE
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Sl. Content of Course Hrs CLOs
5 Z-Transform: Z-transform, Physical significance of

z-transform, Region of convergence (ROC), Z-
transform of some basic causal and anti-causal
signals, Properties of z-transform, Pole-zero Plot,
Inverse z-transform

4 CLO3, 
CLO4

6 Frequency Analysis: FIR System, structures for
FIR System, Direct form realization, Examples
related to FIR system implementation, IIR system,
Structures for FIR System, Direct form structures of
IIR system, DFT, DTFT, FFT algorithms, Circular
Convolution

6 CLO4, 
CLO5

7 Digital Filters: Filter kernel, classification, FIR and
IIR design, kernel conversion, spectral inversion.

6 CLO4, 
CLO5

COURSE OUTLINE
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COURSE SCHEDULE
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Wee
k Topic

Teaching 
Learning 
Strategy

Assessment 
Strategy

Corresponding 
CLOs

1 Introduction to Digital Signal 
Processing (DSP): Definition of 
Signal, System, Basic Block 
Diagram, Advantages, Limitations 
& Applications of DSP

- Lecture, 
multimedia 
presentation.

Class 
participation, 
Group 
Discussion, 
Q&A.

CLO1

2 Signal Classification & Analog-
to-Digital Conversion: Types of 
signals, steps to convert Analog to 
Digital signals.

- Interactive 
lecture; 
problem-
solving session.

Group 
Discussion 
Q&A.

CLO1, CLO2

3 Sampling Theorem and 
Quantization: Alias frequency, 
quantization error, SQNR; Nyquist 
rate problems.

- Example 
problems and 
graphical 
representation.

Group 
Discussion 
Q&A.

CLO2, CLO3

4 Representation Methods of 
Signals: Various representation 
methods, elementary signals.

- Class 
examples, 
signal sketching 
exercises.

Class Test-1 CLO2



COURSE SCHEDULE
Wee

k Topic Teaching 
Learning Strategy

Assessment 
Strategy

Corresponding 
CLOs

5 Energy and Power of Signals: 
Determining energy, power, and 
signal classification.

- Lecture and 
guided practice; 
worked examples.

- Problem-
solving exercise.

CLO 2, CLO 3

6 Signal Manipulation: Basic 
operations like shifting, scaling, 
and folding of signals.

- Practical 
demonstrations 
and group 
exercises.

- In-class 
problems on 
signal 
operations.

CLO 2, CLO 3

7 Discrete Systems: Block 
diagram representation, system 
classification (linear/nonlinear, 
causal/noncausal).

- Diagrammatic 
explanations; 
group discussions.

Problem-solving 
exercise, Q&A, 
Class 
Participation 

CLO 1, CLO 4

8 Linear Convolution and 
Correlation: Cross-correlation, 
auto-correlation.

- Hands-on 
practice with 
numerical 
problems.

Class Test-2 CLO 3

9 Introduction to Z-Transform: 
Significance, ROC, and basic 
concepts.

- Lecture and 
practice session on 
Z-transform.

Assignment-1 CLO 3, CLO 4
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COURSE SCHEDULE
Wee

k Topic Teaching 
Learning Strategy

Assessment 
Strategy

Corresponding 
CLOs

10 Properties & Inverse Z-
Transform: Key properties and 
methods for inverse Z-
transform.

- Problem-solving 
exercises.

- Homework on 
inverse Z-
transform.

CLO 3, CLO 4

11 FIR and IIR Systems: 
Structure and implementation 
basics.

- Lecture, block 
diagram examples.

- Lab 
assignment on 
FIR and IIR 
systems.

CLO 4

12 DFT, DTFT, and Circular 
Convolution: Understanding 
frequency domain analysis.

- Case studies and 
numerical 
problems.

- Quiz on 
frequency-
domain 
transformations.

CLO 3, CLO 4

13 Radix-2 FFT Algorithm: 8-
point DIT-FFT butterfly 
algorithm.

- Simulation using 
MATLAB; 
example 
calculations.

- Lab 
assignment on 
FFT 
implementation.

CLO 4, CLO 5

14 Digital Filters: Advantages, 
disadvantages, applications, 
classification, filter kernel.

- Interactive 
lecture with real-
life examples.

- Short essay on 
filter 
applications.

CLO 4, CLO 5
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COURSE SCHEDULE

Week Topic Teaching Learning 
Strategy

Assessment 
Strategy

Corresponding 
CLOs

15 Filter Kernel Conversion: 
Spectral inversion.

- Demonstrations 
and exercises.

Class Test-3 CLO 4

16 FIR Filter Design: Design 
techniques and practical 
considerations.

- Design session 
with tools like 
MATLAB.

- Lab-based FIR 
filter design 
task.

CLO 5

17 IIR Filter Design: Analysis, 
design methods, and 
simulation.

- Lecture, software-
based design 
(MATLAB or 
Python).

Assignment-2 CLO 5

18 Course Review and Final 
Examination

- Revision and 
problem-solving 
workshop.

- Summative 
assessment 
(written exam).

CLO 1–5

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV14



REFERENCE BOOK
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Video Lecture Playlist
https://youtube.com/playlist?list=PLuh62Q4S
v7BUSzx5Jr8Wrxxn-
U10qG1et&si=FTy0rlueWRQIWQYj

Digital Signal Processing -
Emmanuel C. Ifeachor, 
Barrie W. Jervis

Digital Signal Processing
(4th Edition), John G.
Proakis, Dimitris K
Manolakis



Bloom Taxonomy Cognitive Domain Action Verbs

Remembering
(C1)

Choose • Define • Find • How • Label • List • Match • Name • Omit • Recall • Relate • Select •
Show • Spell • Tell • What • When • Where • Which • Who • Why

Understanding
(C2)

Classify • Compare • Contrast • Demonstrate • Explain • Extend • Illustrate • Infer • Interpret •
Outline • Relate • Rephrase • Show • Summarize • Translate

Applying (C3) Apply • Build • Choose • Construct • Develop • Experiment with • Identify • Interview • Make
use of • Model • Organize • Plan • Select • Solve • Utilize

Analyzing (C4)
Analyze • Assume • Categorize • Classify • Compare • Conclusion • Contrast • Discover • Dissect
• Distinguish • Divide • Examine • Function • Inference • Inspect • List • Motive • Relationships •
Simplify • Survey • Take part in • Test for • Theme

Evaluating (C5)

Agree • Appraise • Assess • Award • Choose • Compare • Conclude • Criteria • Criticize • Decide
• Deduct • Defend • Determine • Disprove • Estimate • Evaluate • Explain • Importance •
Influence • Interpret • Judge • Justify • Mark • Measure • Opinion • Perceive • Prioritize • Prove
• Rate • Recommend • Rule on • Select • Support • Value

Creating (C6)

Adapt • Build • Change • Choose • Combine • Compile • Compose • Construct • Create • Delete
• Design • Develop • Discuss • Elaborate • Estimate • Formulate • Happen • Imagine • Improve •
Invent • Make up • Maximize • Minimize • Modify • Original • Originate • Plan • Predict •
Propose • Solution • Solve • Suppose • Test • Theory
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Segment-1
Introduction of Digital Signal Processing

Prepared By
Noor Md Shahriar

Senior Lecturer, Dept. of EEE, UGV

University of Global Village (UGV), Barishal
Dept. of Electrical and Electronic Engineering (EEE)

Course Code: EEE-0714-3103
Course Title: Digital Signal Processing
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Week 1
Slide 16-23



 Signals, systems and signal processing.

 Basic Elements of DSP.

 Advantages and Disadvantages of DSP.

 Application of DSP.

 Types of Signal.

 A/D Conversion.

 Problems

19 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV
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Signal
A signal is defined as a function representing any physical quantity that varies with time,

space or any other independent variable or variables. It contains information about the

behavior or nature of the phenomenon. Mathematically, we describe a signal as a function of

one or more independent variables. For example,

𝑆𝑆1(𝑡𝑡) = 5𝑡𝑡

𝑆𝑆( 𝑥𝑥𝑦𝑦) = 3𝑥𝑥 + 2𝑥𝑥𝑦𝑦 + 5𝑦𝑦2

 Speech, electrocardiogram and electroencephalogram signals are examples of
information

bearing signals that evolve as function of a single independent variable.

 Two dimensional signal An example of a signal that is a function of two

independent variable is an image signal.

 A video signal is function of three independent variables.
20 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

Signals, Systems and Signal Processing



System

A system may be defined as a physical device that performs an operation on a signal.

System is a mathematical model of a Physical process that relates the input (Excitation) to the

Output (Response). For example, a filter used to reduce the noise and interference

corrupting a desired information bearing signal is a system.

Signal Processing

When we pass a signal through a system, we say that we have processed the signal.

Signals, Systems and Signal Processing (Cont.)

21 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

SystemInput 
Signal / 
Excitation

Processed Signal
Output Signal/ 
Response

Signal
Processing



Basic Elements of a DSP System
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A/D Converter: Digital Signal Processing provides an alternative method for processing the

analog signal. To perform the processing digitally, there is a need for an interface between the analog

signal and the digital processor.This interface is called analog-to-digital (A/D) converter.

DSP: The digital signal processor may be a large programmable digital computer or a small

microprocessor programmed to perform the desired operation in the input signal.

D/A Converter: The digital output from the digital signal processor is to be given to the user in

analog form.This is done by another interface called a digital-to-analog(D/A) converter.



6

Advantages of Digital over Analog Signal Processing

1)DSP Systems are reconfigurable: A digital programmable system allows flexibility in

configuring the digital signal processing operations simply by changing the program.

Reconfiguration of an analog system usually a redesign of hardware followed by testing and

verification to see that it operates properly.

2)Accuracy Consideration: Tolerances in analog circuit components make it extreme

difficult for the system designer to control the accuracy of an analog signal processing system.

On the other hand, a digital system provides much better control of accuracy requirements.

3)Storing Data: Digital signals are easily stored on magnetic media (tape or disk) without de-

terioration or loss of signal fidelity beyond that introduce in the A/D conversion. As a

consequence, the signals become transportable and can be processed off-line in a remote

laboratory.
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Advantages of Digital over Analog Signal Processing (Cont.)
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4)Signal Processing Algorithm: The digital signal processing method also allows for the

implementation of more sophisticated signal processing algorithms. It is usually very difficult to

perform precise mathematical operations on a signal in analog form, but these same operations

can be routinely implemented on a digital computer using software.

5)Cost: In some cases a digital implementation of the signal processing system is cheaper than its

analog counterpart.

6)Effect of Noise: Digital Signal can convey information with greater noise immunity.

7)Electromagnetic interference: There is minimum electromagnetic interference in digital

technology.

8)Security & bandwidth : It is more secure and higher rate transmission with wider bandwidth.



Disadvantages of Digital Signal Processing

1. Speed of operation: One practical limitation is the speed of operation of A/D

converters and digital signal processors. We shall see that signals having extremely wide band

widths require fast-sampling rate A /D converters and fast digital signal processors. Hence there

are analog signals with large bandwidths for which a digital processing approach is beyond the

state of the art of digital hardware.

2. Reconstruction: The process of reconstructing analog signal from the digital signal is very

difficult.

3. Expensive for small applications.

4. Finite precision effect.
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Application of DSP
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Current Research Trends in DSP
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Week 2
Slide 25-30



Classification of Signals: Multichannel and Multidimensional
Multichannel Signal

In some application, signals are generated by multiple source or multiple sensors. Such signals, in 

turn, can be represented in vector form.We refer to such a vector of signals as a multichannel signal.

In electrocardiogram, for example, 3-lead and 12-electrocardiogram (ECG) are often used in practice

which result in a 3 channel and 12 channel signals.

Multidimensional Signal

If the signal is a function of a single independent variable, the signal is called a one dimensional signal.

On the other hand, a signal is called M-dimensional if its value is a function of M independent variable.

Black and white picture is an example of a two-dimensional signal, since the intensity or brightness 

I(x,y) at each point is a function of two independent variables.

Black and whiteTV picture me be treated as a three-dimensional signal. 

Color TV picture is a three-channel and three-dimensional signal.

𝐼𝐼 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 =
𝐼𝐼𝑟𝑟(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
𝐼𝐼𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
𝐼𝐼𝑏𝑏(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
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Classification of Signals: ContinuousTime and DiscreteTime Signal
Continuous Time Signal

Continuous signals or analog signals are defined for every value of time and they take on values in the 

continuous interval (a,b), where a can be −∞ and b can be +∞

Discrete time Signal

Discrete time signals are defined only at certain specific values of time. These time instants need not be 

equidistant, but in practice they are usually taken at equally spaced intervals.

Examples:

Examples: 𝑥𝑥1 𝑡𝑡 = cos(𝜋𝜋𝑡𝑡)

𝑥𝑥2 𝑡𝑡 = 𝑒𝑒− 𝑡𝑡 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑡𝑡 = −∞ < 𝑡𝑡 < ∞

1𝑥𝑥 𝑛𝑛 = 0.8𝑛𝑛,
0,

𝑛𝑛 ≥ 0
𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

n is integer number.
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Classification of Signals: ContinuousValued and DiscreteValued

The values of a continuous time or discrete time signal can be continuous or discrete.

Continuous Valued Signal: If a signal takes on all possible values on a finite or an infinite range, it is 

said to be a continuous valued signal.

Discrete Valued Signal: Alternatively, if the signal takes on values from a finite set of possible 

values, it is said to be discrete-valued signal.

Digital Signal: A discrete time signal having a set of discrete values is called a digital signal. In order 

for a signal to be processed digitally, it must be discrete in time and its values must be discrete (i.e. it

must be digital signal)
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Classification of Signals: Deterministic and Random Signal
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Deterministic (Predictable/Wanted) Signal : Any signal that can be uniquely described by

an explicit mathematical expression, a table of data or a well defined rule is called deterministic. This

term is used to emphasize the fact that all past, present and future values of the signal are

known precisely without any uncertainty.

Random Signal (Unpredictable/ unwanted/ noise): In many practical application the signals

can not be described to any reasonable degree of accuracy by explicit mathematical formulas, or such

description is too complicated to be any practical use.

The lack of such a relationship implies that such signals evolve in time is an unpredictable manners. We

refer to these signals as random.

The o/p of noise generation, the speech signal are example of random signals.



Analog to digital Conversion

Sampling : This is the conversion o f a continuous-time signal into a discrete time signal obtained by

taking “ samples’" of the continuous-time signal at discrete-time instants. Thus, if 𝑥𝑥𝑎𝑎(𝑡𝑡) is the input

to the sampler, the output is 𝑥𝑥𝑎𝑎 𝑛𝑛𝑇𝑇 = 𝑥𝑥 𝑛𝑛 , whereT is called the sampling interval.

Quantization : This is the conversion o f a discrete-time continuous-valued signal 𝑥𝑥(𝑛𝑛)in to a

discrete-time, discrete-valued (digital) signal 𝑥𝑥𝑞𝑞(𝑛𝑛). The value of each signal sample is represented

by a value selected from a finite set o f possible values.

Coding: In the coding process, each discrete value 𝑥𝑥𝑞𝑞(𝑛𝑛) is represented by a b-bit binary sequence.
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Sampling of Analog Signals

Periodic or uniform sampling is described by the relation- 𝑥𝑥 𝑛𝑛 = 𝑥𝑥𝑎𝑎 𝑛𝑛𝑇𝑇 , −∞ ≤ 𝑛𝑛 ≤ ∞ 

where x(n) is the discrete-time signal obtained by “ taking samples” of the analog signal 𝑥𝑥𝑎𝑎(𝑡𝑡) at 

every T seconds. The time interval T between successive samples is called the sampling period or 

sample interval and its reciprocal 1 𝑇𝑇 = 𝐹𝐹𝑠𝑠 is called the sampling rate (samples per second) or the 

sampling frequency (hertz).
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Week 3
Slide 32-45



Periodic sampling establishes a relationship between the time variables t and n of continuous-time and 
discrete-time signals.

𝑛𝑛
𝑡𝑡 = 𝑛𝑛𝑇𝑇 = 𝐹𝐹𝑠𝑠

If the analog signal

Sampled periodically at a rate 𝐹𝐹𝑠𝑠 = 1 𝑇𝑇, the digital signal can be expressed as

From above relationship between the frequency variable F (or Ω) for analog signals and the frequency 
variable f (or 𝜔𝜔) for discrete-time signals.

The frequency variable f of discrete signal is sometimes called Relative normalized frequency
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Sampling of Analog Signals (Cont.)



Alias of Frequency
Consider two sinusoidal analog Signals:

If they are sampled at a rate 𝐹𝐹𝑠𝑠 = 40 𝐻𝐻𝑧𝑧,The corresponding discrete time signal will be:

Thus the sinusoidal signals are identical and consequently, indistinguishable.

Since 𝑥𝑥2(𝑡𝑡) yields exactly the same values as 𝑥𝑥1(𝑡𝑡) when the two are sampled at 𝐹𝐹𝑠𝑠 = 40
samples per second, we say that the frequency 𝐹𝐹2 = 50 𝐻𝐻𝑧𝑧 is an alias of the frequency
𝐹𝐹1 = 10 𝐻𝐻𝑧𝑧 at the sampling rate of 40 samples per second.

It is important to note that 𝐹𝐹2 is not only the alias of 𝐹𝐹1. In fact at the sampling rate of 40 samples 
per second, the frequency 𝐹𝐹3 = 90 𝐻𝐻𝑧𝑧, 𝐹𝐹4 = 130 Hz ….. So on are also an alias of 𝐹𝐹1.
In general, all of the sinusoids cos 2𝜋𝜋 𝐹𝐹1 + 40𝐾𝐾 𝑡𝑡 , 𝑘𝑘 = 1,2,3 … . , sampled at 40 samples per 
second are the aliases of 𝐹𝐹1 = 10 𝐻𝐻𝑧𝑧.
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Alias of Frequency (What should be the sampling Rate?)
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Example 1.4.2 (Proakis)
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Example 1.4.2 (Proakis)- Cont.

40 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



If the highest frequency contained in an analog signal 𝑥𝑥𝑎𝑎(𝑡𝑡) is 𝑭𝑭𝒎𝒎𝒂𝒂𝒙𝒙 = 𝑩𝑩 and the signal is sampled at
a rate 𝑭𝑭𝒔𝒔 > 𝟐𝟐𝑭𝑭𝒎𝒎𝒂𝒂𝒙𝒙 ≡ 𝟐𝟐𝑩𝑩. then 𝑥𝑥𝑎𝑎(𝑡𝑡) can be exactly recovered from it sample values using the
interpolation function

Sampling Theorem

𝑥𝑥𝑎𝑎(𝑡𝑡) may be expressed as

Where 𝑥𝑥𝑎𝑎
𝑛𝑛
𝐹𝐹𝑠𝑠

= 𝑥𝑥𝑎𝑎(𝑛𝑛𝑇𝑇) ≡ 𝑥𝑥(𝑛𝑛) are the samples of 𝑥𝑥𝑎𝑎(𝑡𝑡)

The minimum sampling rate of a signal to
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sample value is
is called the

recover it from its
𝑭𝑭𝑵𝑵 = 𝟐𝟐𝑭𝑭𝒎𝒎𝒂𝒂𝒙𝒙 = 𝟐𝟐𝑩𝑩
Nyquist rate.



Quantization of Continuous-Amplitude Signal
Quantization: The process of converting a discrete-time continuous-amplitude signal into a digital

signal by expressing each sample value as a finite (instead of an infinite) number of digits is called

quantization.

Quantization error: The error introduced in representing the continuous-valued signal by a finite

set of discrete value levels is called quantization error or quantization noise.

The quantization error is a sequence 𝑒𝑒𝑞𝑞 𝑛𝑛 defined as the difference between the quantized value

(𝑥𝑥𝑞𝑞 𝑛𝑛 = 𝑄𝑄[𝑥𝑥(𝑛𝑛)]) and the actual sample value-

𝑒𝑒𝑞𝑞 𝑛𝑛 = 𝑥𝑥𝑞𝑞 𝑛𝑛 − 𝑥𝑥(𝑛𝑛)

Resolution: The values allowed in the digital signal are called the quantization levels, whereas the 

distance ∆ between two successive quantization levels is called the quantization step size or resolution. 

The quantization error eq (n) in round ing is limited to the range of − ∆ 2 to + ∆ 2 , that is,

− ∆ ≤ 𝑒𝑒 (𝑛𝑛) ≤ ∆
2 𝑞𝑞 2

In other words, the instantaneous quantization error cannot exceed 
half of the quantization step.
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𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥If and represent the Illustrating the quantization process for the function:
minimum and maximum value of x(n)
and L is the number of quantization
levels, then

∆= 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝐿𝐿 − 1

𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 is known as the dynamic
range of signal

For the example in Fig,
𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥=1 and 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 = 0, 𝐿𝐿 = 11
So, ∆= 0.1

Note that if the dynamic range is fixed,
in creasing the number of quantization
levels, L results in a decrease o f the
quantization step size. Thus the
quantization error decreases and the
accuracy o f the quantizer increases.

Quantization of Continuous-Amplitude Signal (Cont.)

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV43



Quantization of Sinusoidal Signal

The analog sinusoidal signal, 𝑥𝑥𝑎𝑎 𝑡𝑡 = 𝐴𝐴 cos Ω0𝑡𝑡

The discrete sinusoidal signal, x n = 𝑥𝑥𝑎𝑎(𝑛𝑛𝑇𝑇)
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Here, 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 = −𝐴𝐴 and 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐴𝐴, If the quantizer has b bit accuracy, ∆= 𝐴𝐴+𝐴𝐴 = 2𝐴𝐴

2𝑏𝑏 2𝑏𝑏

Quantization of Sinusoidal Signal (Cont.)
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This implies that the SQNR increases approximately 6 dB for every bit added to the word length , that

is. for each doubling of the quantization levels. Although this formula was derived for sinusoidal

signals, but similar result holds for every signal whose dynamic range spans the range of the quantizer.

This relationship is extremely important because it dictates the number of bits required by a specific

application to assure a given signal-to noise ratio. For example, most compact disc players use a

sampling frequency of 44.1 kHz and 16-bit sample resolution , which implies a SQNR of more than

96 dB.
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Quantization of Sinusoidal Signal (Cont.)



Example 1.4.4 (Proakis)
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Since, 𝐹𝐹𝑠𝑠 = 5 𝐾𝐾𝐻𝐻𝑧𝑧, the folding frequency is 𝐹𝐹𝑠𝑠/2 = 2.5 𝐾𝐾𝐻𝐻𝑧𝑧.This is the maximum frequency that
can be represented uniquely by the sampled signal.The frequency 𝐹𝐹1 is less than 𝐹𝐹𝑠𝑠/2 and thus is not
affected by aliasing. However the other two frequencies are below the folding frequency and they will
be changed by the aliasing effect.
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Example 1.4.4 (Proakis)- Cont.



Example 1.4.4 (Proakis)- Cont.
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****
Solve the exercise problems related to the topics discussed in the 
lecture.
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 Representation of discrete time signals.

 Some elementary discrete time signals

 Classification of discrete time (DT) signals.

 Manipulation of DT signals

 Classification of Discrete Time System

 Convolution sum

 Correlation

Text Book:
Digital Signal Processing (4th Edition), John G. Proakis, Dimitris K Manolakis
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Representation of Discrete-Time Signals

1. Graphical Representation

2. Functional Representation

3.Tabular Representation
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Representation of Discrete-Time Signals (Cont.)

4. Sequence Representation

An infinite-duration signal or sequence with the time origin (n=0) indicated by the symbol ↑ is 
represented as

A finite duration sequence can be represented as

Whereas a finite-duration sequence that satisfies the condition 𝑥𝑥 𝑛𝑛 = 0 for n<0 can be represented as
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Some Elementary Discrete –Time Signals

1. Unit Sample Sequence

The unit sample sequence is denoted as 𝛿𝛿(𝑛𝑛) and is defined as
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2. Unit Step signal

The unit step signal is denoted as u(𝑛𝑛) and is defined as

Some Elementary Discrete –Time Signals (cont.)



3. Unit ramp signal

The unit ramp signal is denoted as 𝑢𝑢𝑟𝑟(𝑛𝑛) and is defined as

Some Elementary Discrete –Time Signals (cont.)



Some Elementary Discrete –Time Signals (cont.)
4. Exponential signal

The exponential signal is a sequence of the form

If the parameter a is real, then x(n) is real.
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Class Test Next Week
Syllabus: Slide 1-54
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Classification of Discrete –Time Signals
Energy Signal and Power Signal

The energy E of a signal x(n) defined as

The energy of a signal can be finite or infinite. If E is finite (i.e. 0<E<∞), then x(n) is called an energy 
signal.

Many signals that posses infinite energy have a finite average power.The average power of a discrete-
time signal x(n) is defined as

If we define the signal energy of x(n) over the finite interval −𝑁𝑁 ≤ 𝑛𝑛 ≤ 𝑁𝑁 as

Then we can express energy E as

So the average power of the signal x(n) as

Clearly, if E is finite, P=0. On the other hand, if E is infinite, the average power P may be either 
finite or infinite. If P is finite and nonzero, the signal is called a power signal.
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1
1 − 𝑟𝑟

, 𝑟𝑟 < 1
∞

𝑟𝑟𝑘𝑘 =
𝑘𝑘=0

Formula

Here, for 0 < 𝛼𝛼 < 1 we can say 0 < 𝐸𝐸 < ∞

So, 𝑥𝑥 𝑛𝑛 = 𝛼𝛼𝑛𝑛𝑢𝑢 𝑛𝑛 is an energy signal for 0 < 𝛼𝛼 < 1
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Classification of Discrete –Time Signals (Cont.)
Energy Signal and Power Signal (Cont.)

Determine the power and energy of the following sequence.

𝒙𝒙 𝒏𝒏 = 𝜶𝜶𝒏𝒏𝒖𝒖( 𝒏𝒏) , 𝒘𝒘𝒉𝒉𝒆𝒆𝒓𝒓𝒆𝒆 𝟎𝟎 < 𝜶𝜶 < 𝟏𝟏

�
𝑛𝑛=−∞

∞
[𝑥𝑥(𝑛𝑛)]2= �

𝑛𝑛=−∞

∞
[𝑎𝑎𝑛𝑛u(𝑛𝑛)]2= �

𝑛𝑛=0

∞
[𝑎𝑎𝑛𝑛]2= �

𝑛𝑛=0

∞
[𝑎𝑎2]𝑛𝑛=

1
1 − 𝑎𝑎2



Classification of Discrete –Time Signals (cont.)

Determine the power and energy of the unit step sequence.

• A signal can be an energy signal, a power signal or neither type. Unit ramp sequence is neither a 

power signal nor an energy signal.

• A signal can not be both an energy signal and a power signal.

Problem: Check Whether the following signals are energy or power signals

𝟑𝟑
𝟏𝟏 𝒏𝒏 𝝅𝝅

𝟒𝟒
(i) 𝜹𝜹(𝒏𝒏) (ii) 𝒙𝒙 𝒏𝒏 = ( ) 𝒖𝒖(𝒏𝒏) (iii) 𝐱𝐱 𝐧𝐧 = 𝐬𝐬𝐢𝐢𝐧𝐧( 𝒏𝒏) (iv) x(n)=𝒆𝒆 𝟒𝟒
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Classification of Discrete –Time Signals (cont.)
Periodic Signal and aperiodic signal
A signal x(n) is periodic with period N (N>0) if and only if

The smallest value of N that satisfies above relation is called the fundamental period. If there is no value

of N that satisfies the above relation, the signal is called nonperiodic or aperiodic.

The sinusoidal signal in the form 𝑥𝑥 𝑛𝑛 = 𝐴𝐴 sin(2𝜋𝜋𝑓𝑓0𝑛𝑛) is periodic when 𝑓𝑓0is a rational number, that 

is, if 𝑓𝑓0is expressed as
𝟎𝟎 𝑵𝑵𝒇𝒇 = 𝒌𝒌 , 𝒘𝒘𝒉𝒉𝒆𝒆𝒓𝒓𝒆𝒆 𝒌𝒌 𝒂𝒂𝒏𝒏𝒅𝒅 𝑵𝑵 𝒂𝒂𝒓𝒓𝒆𝒆 𝒊𝒊𝒏𝒏𝒕𝒕𝒆𝒆𝒈𝒈𝒆𝒆𝒓𝒓𝒔𝒔

Periodic Signals are Power Signals

The energy of the periodic signal x(n) for −∞ ≤ 𝑛𝑛 ≤ ∞ is infinite. On the other hand , the average 

power of the periodic signal is finite and is equal to the average power over a single period.Thus if x(n) 

is periodic signal with fundamental period N and takes on finite values , its power is given by

Consequently the periodic signals are power signal.
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Causality of Signal
Causal Signal
A continuous time signal 𝑥𝑥(𝑡𝑡) is called causal signal if the signal 𝑥𝑥(𝑡𝑡) = 0
for 𝑡𝑡 < 0. Therefore, a causal signal does not exist for negative time. The
unit step signal u(t) is an example of causal signal as shown in Figure-1.
Similarly, a discrete time sequence x(n) is called the causal sequence if
the sequence x(n) = 0 for n < 0.
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Anti-Causal Signal
A continuous-time signal x(t) is called the anti-causal signal if x(t) = 0
for t > 0. Hence, an anti-causal signal does not exist for positive time.
The time reversed unit step signal u(-t) is an example of anti-causal
signal (see Figure-2).
Similarly, a discrete time sequence x(n) is said to be anti-causal
sequence if the sequence x(n) = 0 for 𝑡𝑡 > 0.



Causality of Signal (cont.)

Non-Causal Signal
A signal which is not causal is called the non-causal signal. Hence, by 
the definition, a signal that exists for positive as well as negative time is 
neither causal nor anti-causal, it is non-causal signal. The sine and 
cosine signals are examples of non-causal signal (see Figure-3).

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV66



Classification of Discrete –Time Signals (cont.)
Symmetric (even) signal and Antisymmetric (odd) Signal

A real valued signal x(n) is called symmetric (even) if

x(-n)=x(n) for all n.

On the other hand, a signal x(n) is called antisymmetric (odd) if

x(-n)=-x(n) for all n

If x(n) is odd, x(0)=0

Even Signal
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Odd Signal



Classification of Discrete –Time Signals (cont.)

Symmetric (even) signal and Antisymmetric (odd) Signal

Many signal are neither even nor odd.Any arbitrary signal can be expressed as the sum of two 

signal components, one of which is even and the other odd.

The even signal components is expressed as

The odd signal components is expressed as
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The signal x(n) is expressed as-



Classification of Discrete –Time Signals (cont.)

Symmetric (even) signal and Antisymmetric (odd) Signal

Find the even and odd components of following signal x(n).

x(n)={2,1.5, 1, 0.5, 0}

x(-n)= {0,0.5,1,1.5,2}

2
𝑥𝑥𝑒𝑒 𝑛𝑛 = 1 [𝑥𝑥 𝑛𝑛 + 𝑥𝑥(−𝑛𝑛)]= {1,1,1,1,1}

2
𝑥𝑥𝑒𝑒 𝑛𝑛 = 1 [𝑥𝑥 𝑛𝑛 − 𝑥𝑥(−𝑛𝑛)]= {1,0.5,0,-0.5,-1}

Task: Find the even and odd parts of the following signals:
(a) x(n)=u(n) (b) 𝒙𝒙 𝒏𝒏 = 𝜶𝜶𝒏𝒏𝒖𝒖(𝒏𝒏)
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Simple manipulations of Discrete-Time Signals
Time Shifting

• A signal x(n) may be shifted in time by replacing the independent variable n by (n-k), where k is 

integer.

• If k is a positive integer, the time shift results in a delay of the signal by k units of time.

• If k is negative integer, the time shift results in an advance of the signal by |k| units in time.

Delay/Right Shift
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Advances/Left Shift

Original Signal



Simple manipulations of Discrete-Time Signals (Cont.)

Folded signal
Original Signal

Folding

Another useful modification of the time base is to replace the independent variable n by –n.The 

result of this operation is a folding or a reflection of the signal about the time origin n=0
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Simple manipulations of Discrete-Time Signals (Cont.)

Folded and shifted signalOriginal Signal

Shifting and Folding

It is important to note that the operations of folding and time delaying (or advancing) a signal are not 

commutative. If we denote the time-delay operation byTD and folding operation by FD, we can write-
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Folded signal



Simple manipulations of Discrete-Time Signals (Cont.)
Time Scaling or Down sampling

Another modification of independent variable involves replacing n by 𝜇𝜇𝑛𝑛, where 𝜇𝜇 is an integer.We 

refer to this time-base modification as time scaling or down-sampling.

If the signal x(n) was originally obtained

by sampling an analog signal 𝑥𝑥𝑎𝑎 𝑡𝑡 ,

then 𝑥𝑥 𝑛𝑛 = 𝑥𝑥𝑎𝑎(𝑛𝑛𝑇𝑇),

whereT is the sampling interval.

Now, 𝑦𝑦 𝑛𝑛 = 𝑥𝑥 2𝑛𝑛 = 𝑥𝑥𝑎𝑎 2𝑇𝑇𝑛𝑛 . 

Hence the time-scaling operation is 

equivalent to changing the sampling rate 

from 1/T to 1/μT, that is, to decrease 

the rate by a factor μ. This is a down-

sampling operation.
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Simple manipulations of Discrete-Time Signals (Cont.)

Addition, Multiplication and Scaling of sequence

Amplitude Scaling of a signal by a constant A is accomplished by multiplying the value of every signal 
sample A. Consequently, we obtain

The addition (sum) of two signals 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛) is a signal y(𝑛𝑛), whose value at any instant is 
equal to the sum of the values of these two signals at that instant, that is,
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The product of two signals is similarly defined on a sample-to-sample basis as



Input-Output Description of System
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Block diagram representation of DiscreteTime System
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The above expressions represent that x(n) is transformed by the system into a signal y(n) where the

symbol 𝜏𝜏 denotes the transformation (also called an operator) or processing performed by the system

on x(n) to produce y(n).

𝜏𝜏

𝑦𝑦(𝑛𝑛) ≡ 𝜏𝜏[𝑥𝑥(𝑛𝑛)]

𝑦𝑦(𝑛𝑛) 𝑥𝑥(𝑛𝑛)



Block diagram representation of DT System

An adder System

An adder system that performs the addition of two signal sequences to form another (the sum)
sequence y(n). Note that it is not necessary to store either one of the sequence in order to perform the
addition i.e. the addition operation is memoryless.

Constant Multiplier

This operation apply a scale factor on the input x(n). It is also memoryless operation.
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Block diagram representation of DT System (Cont.)
A signal Multiplier

It is also Memoryless system that multiplies two signal sequences to form another and is represented 
by following block-

Unit delay element

In unit delay system if input signal is x(n), the output is x(n-1). In fact, the sample x(n-1) is stored
in memory at time n-1 and it is recalled from memory at time n to form y(n)=x(n-1). Thus this
basic building block requires memory.

Unit advance element
A unit advance moves the input x(n) ahead by one sample in time to yield x(n=1). Such
advances impossible in real time, since, it involves looking into future of the signal. On the other hand,
if we store the signal in the memory of the computer, we can recall any sample at any time.
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Problem: Using basic building blocks sketch the block diagram representation of the discrete-time
system described by the input-output relation

𝑦𝑦 𝑛𝑛 = 1 𝑦𝑦 𝑛𝑛 − 1 + 1 𝑥𝑥 𝑛𝑛 + 1 𝑥𝑥(𝑛𝑛 − 1)
4 2 2

Where x(n) is the input and y(n) is the output of the system.

Block diagram representation of DT System (Cont.)
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Block diagram representation of DT System (Cont.)

𝑦𝑦 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 + 𝑥𝑥(𝑛𝑛 − 1)
2

1/2
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𝑦𝑦 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 + 𝛼𝛼𝑦𝑦(𝑛𝑛 − 1)

Problem: Find the output of the following system, if 𝜶𝜶 = 𝟏𝟏. 𝟎𝟎𝟓𝟓 and input
𝒙𝒙 𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟎𝟎 𝜹𝜹(𝒏𝒏)
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Block diagram representation of DT System (Cont.)



𝑦𝑦 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 + 𝛼𝛼𝑦𝑦(𝑛𝑛 − 3)

Problem: Find the output of the following system, if 𝜶𝜶 = 𝟏𝟏 and input 𝒙𝒙 𝒏𝒏 =
𝜹𝜹(𝒏𝒏). Assume initially all input, output and memory blocks are 0.

Block diagram representation of DT System (Cont.)

What happens if 𝜶𝜶 = 𝟎𝟎. 𝟗𝟗? ?
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Classification of DT Systems
Staticvs dynamic System

 A discrete-time system is called static or memoryless if its output at any instant n depends at most 

on the input samples at the same time, but not on past or future samples of the input. In other cases, 

the system is said to be dynamic or to have memory.

 If the output of a system at time n is completely determined by the input samples in the interval

from n-N to n (𝑁𝑁 ≥ 0), the system is said to have memory of duration N.

 If N=0, the system is static. If 0<N<∞, the system is said to have finite memory, whereas if N= ∞,

the system is said to have infinite memory.

Example of Static Memory
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Finite Memory

Infinite Memory

Example of Dynamic Memory

Finite Memory



Classification of DT Systems (Cont.)
Time variantvs time invariant System
A system is called time-invariant if its input-output characteristics do not change with time. In other

words, a relaxed system 𝜏𝜏 is time invariant or shift invariant if and only if

implies that

for every input signal x(n) and every time shift k. Otherwise the system is said to be time variant.

Identifying a system asTime variant or time invariant

Step-1: Excite the system with an arbitrary input sequence x(n), which produces an output denoted as 

y(n).

Step-2: Delay the input sequence by some amount k and recompute the output which is written as

Step-3: Delay output y(n) obtained in step-1 by some amount k to find y(n-k). 

Now if y(n,k)=y(n-k), for all possible values of k, the system is time invariant.

But if the output 𝑦𝑦(𝑛𝑛, 𝑘𝑘) ≠ 𝑦𝑦(𝑛𝑛 − 𝑘𝑘), even for one value of k, the system is time variant.

86 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



Classification of DT Systems (Cont.)
Time variantvs time invariant System: Determine if the following systems are time 
invariant or time variant. (Example 2.2.4, Proakis)

The system is described by

Input delayed by k unit and applied to the 
system results

If y(n) delayed by k unit, we get

System follows that y(n,k)=y(n-k). 

Therefore, the system is time invariant.

The input-output equation for this system is

The response of this system to x(n-k) is 

If y(n) delayed by k unit, we get
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The system is time variant, since

𝑦𝑦(𝑛𝑛, 𝑘𝑘) ≠ 𝑦𝑦(𝑛𝑛 − 𝑘𝑘),



Classification of DT Systems (Cont.)
LinearVs nonlinear System
A linear system is one that satisfies the superposition principle. Mathematically, a system is liner if and

only if

For any arbitrary sequences 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛), and any arbitrary constant 𝑎𝑎1 and 𝑎𝑎2

The system 𝝉𝝉 is linear if
and only if 𝒚𝒚 𝒏𝒏 = 𝒚𝒚′(𝒏𝒏)
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See example 2.2.5 (Proakis)



Linearity of a System
Problem
Determine whether the following system described by the equation is linear or nonlinear.

𝑑𝑑𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑦𝑦 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)
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Using the superposition theorem, we can prove that the system is linear.
For input x1(t), the output is

𝑑𝑑𝑦𝑦1(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑦𝑦1 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 . . (1)
For input x2(t), the output is

𝑑𝑑𝑦𝑦2(𝑡𝑡)
𝑑𝑑𝑡𝑡 + 𝑦𝑦2 𝑡𝑡 = 𝑥𝑥2 𝑡𝑡 . . (2)

Eqn(1) * a1+ Eqn(2) * a2

𝑎𝑎1
𝑑𝑑𝑦𝑦1(𝑡𝑡)

𝑑𝑑𝑡𝑡 + 𝑎𝑎2
𝑑𝑑𝑦𝑦2(𝑡𝑡)

𝑑𝑑𝑡𝑡 + 𝑎𝑎1𝑦𝑦1 𝑡𝑡 + 𝑎𝑎2𝑦𝑦2 𝑡𝑡 = 𝑎𝑎1𝑥𝑥1 𝑡𝑡 + 𝑎𝑎2𝑥𝑥2 𝑡𝑡 . . (3)
Now Putting 𝑎𝑎1= 𝑎𝑎2=1, 𝑥𝑥1 𝑡𝑡 + 𝑥𝑥2 𝑡𝑡 = x 𝑡𝑡 & 𝑦𝑦1 𝑡𝑡 + 𝑦𝑦2 𝑡𝑡 =y(t) in Eqn(3) we get,

𝑑𝑑𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡 + 𝑦𝑦 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)

Which is same as the original Equation. So, the System is Linear.



Linearity of a System
Problem
Determine whether the following system described by the equation is linear or nonlinear.

𝑑𝑑𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑦𝑦 𝑡𝑡 + 2 = 𝑥𝑥(𝑡𝑡)
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Using the superposition theorem, we can prove that the system is linear.
For input x1(t), the output is

𝑑𝑑𝑦𝑦1(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑦𝑦1 𝑡𝑡 + 2 = 𝑥𝑥1 𝑡𝑡 . . (1)
For input x2(t), the output is

𝑑𝑑𝑦𝑦2(𝑡𝑡)
𝑑𝑑𝑡𝑡 + 𝑦𝑦2 𝑡𝑡 + 2 = 𝑥𝑥2 𝑡𝑡 . . (2)

Eqn(1) * a1+ Eqn(2) * a2

𝑎𝑎1
𝑑𝑑𝑦𝑦1(𝑡𝑡)

𝑑𝑑𝑡𝑡 + 𝑎𝑎2
𝑑𝑑𝑦𝑦2(𝑡𝑡)

𝑑𝑑𝑡𝑡 + 𝑎𝑎1𝑦𝑦1 𝑡𝑡 + 𝑎𝑎2𝑦𝑦2 𝑡𝑡 + 2𝑎𝑎1 + 2𝑎𝑎2 = 𝑎𝑎1𝑥𝑥1 𝑡𝑡 + 𝑎𝑎2𝑥𝑥2 𝑡𝑡 . . (3)
Now Putting 𝑎𝑎1= 𝑎𝑎2=1, 𝑥𝑥1 𝑡𝑡 + 𝑥𝑥2 𝑡𝑡 = x 𝑡𝑡 & 𝑦𝑦1 𝑡𝑡 + 𝑦𝑦2 𝑡𝑡 =y(t) in Eqn(3) we get,

𝑑𝑑𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡 + 𝑦𝑦 𝑡𝑡 + 4 = 𝑥𝑥(𝑡𝑡)

Which is not the same as the original Equation. So, the System is Non-Linear.



Classification of DT Systems (Cont.)
Causalvs Noncausal System

A system is said to be causal if the output of the system at any time n [i.e., y(n)] depends only on

present and past inputs [i.e., x(n), x(n-1), x(n-2), ….] but does not depend on future inputs [i.e.,

x(n+1), x(n+2), ….]

Mathematically,

If a system does not satisfy this definition, it is called noncausal. Such a system has an output that 

depends not only on present and past inputs but also in future inputs.

Note:

It is apparent that in real-time signal processing applications we cannot observe future values of the 

signal, and hence a noncausal system is physically unrealizable (i.e., it can not be implemented). On the

other hand if the system is recored so that the processing is done by off-line (nonreal time), it is 

possible to implement a non causal system.
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Classification of DT Systems (Cont.)
Stablevs unstable System

An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and only if

every bounded input produces a bounded output at each and every instant.

The condition that the input sequence x(n)and the output sequence y(n) are bounded is translated 

mathematically to mean that there exist some finite numbers, say 𝑀𝑀𝑥𝑥 and 𝑀𝑀𝑦𝑦, such that

for all n.

If, for some bounded input sequence x(n), the output is unbounded (infinite), the system is classified
as unstable.
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StableVs unstable System (Cont.)

Example: Check whether the following system is stable or unstable.
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(iii) 𝒚𝒚(𝒏𝒏) = 𝐜𝐜𝐨𝐨𝐬𝐬 𝒏𝒏 𝒙𝒙(𝒏𝒏) (iv) 𝒚𝒚 𝒏𝒏 = 𝒙𝒙(𝒏𝒏) 
sin(𝒏𝒏)(i) 𝒚𝒚 𝒏𝒏 = 𝒙𝒙𝟐𝟐 𝒏𝒏 (ii) 𝒚𝒚 𝒏𝒏 = 𝒏𝒏 𝒙𝒙(𝒏𝒏)

(i) 𝒚𝒚 𝒏𝒏 = 𝒙𝒙𝟐𝟐 𝒏𝒏
For any bounded input x(n)= 𝐵𝐵𝑥𝑥 < ∞,

𝑦𝑦(𝑛𝑛) = (𝐵𝐵𝑥𝑥)2< ∞
At each and every instant (for any value of n), the output is bounded. 
Therefore, the system is BIBO stable.

(ii) 𝒚𝒚 𝒏𝒏 = 𝒏𝒏 𝒙𝒙(𝒏𝒏)
For any bounded input x(n)= 𝐵𝐵𝑥𝑥 < ∞,

𝑦𝑦(𝑛𝑛) = 𝑛𝑛(𝐵𝐵𝑥𝑥)2

When 𝑛𝑛 = ∞, 𝑦𝑦 𝑛𝑛 = ∞
At each and every instant (for any value of n), the output is not bounded. 
Therefore, the system is BIBO unstable.

(iii) Stable
Hints: 𝑦𝑦 𝑛𝑛 = cos(𝑛𝑛)𝐵𝐵𝑥𝑥 , −1 < cos 𝑛𝑛 < 1 𝑓𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑛𝑛𝑦𝑦 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒 𝑜𝑜𝑓𝑓 𝑛𝑛
(iv) Unstable
Hints: 𝑦𝑦 𝑛𝑛 = 𝐵𝐵𝑥𝑥/sin(𝑛𝑛) , 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 sin 𝑛𝑛 = 0, 𝑦𝑦 𝑛𝑛 = ∞

Classification of DT Systems (Cont.)



Classification of DT Systems (Cont.)
StableVs unstable System (Cont.)
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Analysis of DT LinearTime-Invariant System

There are two basic methods for analyzing the behavior or response of a linear system to a given input 

signal:

Method-1: This method is based on the direct solution of the input-output equation for the system

which is called the difference equation.

Method-2:

In this method, the input signal x(n) is decomposed or resolved into a sum of elementary signals. The

elementary signals are selected so that the response of the system to each signal component is easily

determined.

Then, using the linearity property of the system, the response of the system to the elementary signals

are added to obtain the total response of the system to the given input signal.
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Analysis of DT LinearTime-Invariant System (Cont.)

Elaboration of 2nd method

Suppose that, the input signal x(n) is resolved into a weighted sum of elementary signal components
{𝑥𝑥𝑘𝑘(𝑛𝑛)}

𝐶𝐶𝑘𝑘 is the set of amplitudes (weighting coefficients)

Suppose the response of the system to the elementary signal component 𝑥𝑥𝑘𝑘(𝑛𝑛) is 𝑦𝑦𝑘𝑘(𝑛𝑛)

Considering the linearity property total response of input signal x(n) is
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Choice of elementary signal

If we place no restriction on the characteristics of input 

signal, then most convenient way to express the input 

sequence as weighted sum of unit sample (impulse)

sequence.



Analysis of DT LinearTime-Invariant System (Cont.)

Resolution of a Discrete Time Signal into Impulses



Analysis of DT LinearTime-Invariant System (Cont.)

Example 2.3.1: Consider the special case of a finite-duration sequence given as

Resolve the sequence x(n) into a sum of weighted impulse sequences

Solution: Since the sequence x(n) is nonzero for the instants n=-1,0,2, we need three impulses at 
delays k= -1,0 and 2.
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Analysis of DT LinearTime-Invariant System (Cont.)

Time- Invariance property

UsingTime Invariance property
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Response of LTI System to arbitrary Inputs:The Convolution Sum

Response of the system for the unit sample sequence at n=k ;

Resolving the sequence x(n) into a sum of impulse sequence, 

The response of the system for input x(n)



Analysis of DT LinearTime-Invariant System (Cont.)

Response of LTI System to arbitrary Inputs:The Convolution Sum

The Convolution Sum

The above equation that gives the response y(n) of the LTI system as a function of the input signal x(n)

and unit sample (impulse) response h(n) is called a convolutional sum.

The convolution sum is used to compute the output of a LTI system for a given input 

x[n] and impulse response h[n].

The process of computing convolution involves the following four steps:
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Analysis of DT LinearTime-Invariant System (Cont.)
Example (1) of Convolution Sum

The impulse response of a linear time-invariant system is

Determine the response of the system to the input signal

Solution

The Convolution Sum

The output at n=0
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Analysis of DT LinearTime-Invariant System (Cont.)

Example (1) of Convolution Sum (Cont.)

The response of the system at n=1,

The response of the system at n=-1,
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Analysis of DT LinearTime-Invariant System (Cont.)

Example (1) of Convolution Sum (Cont.)

In similar manner, we obtained
y(2)= 8, y(3)=3, y(4)= -2, y(5)=-1
and y(n)=0, for n>5

Also, y(-2)=0 and y(n)=0 for n<-1

The enter response of the system ,
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Analysis of DT LinearTime-Invariant System (Cont.)

Commutative properties of Convolution Sum

We know the equation of convolution sum,

Defining a new index, m=n-k, we can write k=n-m.The above equation can be expressed as:

Since m is a dummy index, we may simply replace m by k so that
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Analysis of DT LinearTime-Invariant System (Cont.)

Example (2) of Convolution Sum

Determine the output y(n) of a relaxed linear time-invariant system with impulse response
ℎ 𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑢𝑢 𝑛𝑛 , 𝑎𝑎 < 1

When the input is a unit step sequence, that is, x(n)=u(n)

Solution
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Analysis of DT LinearTime-Invariant System (Cont.)

Example (2) of Convolution Sum (Cont.)

Clearly, for n>0, the output is

On the other hand for n<0, the
output is y(n)=0

The final value of output as n approaches infinity is
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A plot of the output y(n) is illustrated in Fig (f)



Find the total response when the input function is 𝑥𝑥 𝑛𝑛 =
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1
2

𝑛𝑛
𝑢𝑢 𝑛𝑛 and the impulse response is

given by h 𝑛𝑛 = 1
3

𝑛𝑛
𝑢𝑢 𝑛𝑛

𝑦𝑦 𝑛𝑛

Applying the convolution formula,
∞ ∞

= 𝑥𝑥 𝑘𝑘 ℎ(𝑛𝑛 − 𝑘𝑘) =
𝑘𝑘=−∞ 𝑘𝑘=−∞

1
2

𝑘𝑘

𝑢𝑢 𝑘𝑘
1
3

𝑛𝑛−𝑘𝑘

𝑢𝑢(𝑛𝑛 − 𝑘𝑘)

𝑛𝑛

= 
𝑘𝑘=0

1
2

𝑘𝑘 1
3

𝑛𝑛−𝑘𝑘 1
3= ( )𝑛𝑛

𝑘𝑘=0

𝑛𝑛
3
2

𝑘𝑘

1
= (3)

31 − ( )
𝑛𝑛 2

𝑛𝑛+1

3
21 − ( )

1
3

𝑛𝑛= (−2)( ) 𝑢𝑢 𝑛𝑛 + 3
1
2

𝑛𝑛

𝑢𝑢(𝑛𝑛)

Analysis of DT LinearTime-Invariant System (Cont.)

Example (3) of Convolution Sum



Analysis of DT LinearTime-Invariant System (Cont.)

Practice Problems

1) The impulse response of a system is h(n)=u(n), find the output of the system when input 
x(n)=u(n).

2) The input and impulse response of a system is given below. Find the output of the system.
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Analysis of DT LinearTime-Invariant System (Cont.)

System with Finite-Duration and Infinite-Duration Impulse Response
Linear time-invariant system may have finite duration impulse response (FIR) or infinite duration
impulse response (IIR).
An FIR system has an impulse response that is zero outside of some finite time interval. For the causal 
FIR systems we can write:
h(n)=0, n<0 and n≥ M
The convolution formula for such system reduces to

𝑀𝑀−1

𝑦𝑦 𝑛𝑛 = ℎ 𝑘𝑘 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑘𝑘=0

Output at any time n is simply a weighted linear combination of the input signal samples x(n), x(n-1),
…, x(n-M+1). An FIR system has a finite memory of length M samples.

An IIR linear time-invariant system has an infinite-duration impulse response.The output of IIR 
system based on convolution formula, is

∞

𝑦𝑦 𝑛𝑛 = ℎ 𝑘𝑘 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑘𝑘=0

In this case, the system output is a weighted [by the impulse response h(k)] linear combination of the
input signal samples x(n), x(n-1), x(n-2), ….. Since this weighted sum involves the present and all the
past input samples, we say the system has an infinite memory.
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Recursive and Non-recursive discrete-time system

1

The convolution summation formula expresses the output of the linear time-invariant system explicitly
and only in terms of the input signal. There are many systems where it is either necessary or desirable to
express the output of the system not only in terms of the present and past values of the input, but also in
terms of the already available past output values. In general, a system whose output y(n) at time n
depends on any number of past output values y(n-1), y(n-2), …. is called a recursive system.
Example of recursive system:
Computation of cumulative average of a signal x(n) in the interval 0≤ k ≤ n

𝑛𝑛

𝑦𝑦 𝑛𝑛 = 𝑛𝑛 + 1 𝑥𝑥(𝑘𝑘) , 𝑛𝑛 = 0,1, … … . .
𝑘𝑘=0

The computation of y(n) requires the storage of all the input samples x(k) for 0≤ k ≤ n. Since n is
increasing, memory requirements of the system grow linearly with time.
However y(n) can be computed more efficiently by utilizing the previous output value y(n-1)

𝑛𝑛−1

𝑛𝑛 + 1 𝑦𝑦 𝑛𝑛 = 𝑥𝑥(𝑘𝑘) + 𝑥𝑥 𝑛𝑛 = 𝑛𝑛𝑦𝑦 𝑛𝑛 − 1 + 𝑥𝑥(𝑛𝑛)
𝑘𝑘=0

Hence,

𝑦𝑦 𝑛𝑛
𝑛𝑛

= 𝑛𝑛 + 1 𝑦𝑦 𝑛𝑛 − 1
1

+ 𝑛𝑛 + 1 𝑥𝑥(𝑛𝑛)
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11
3

𝑦𝑦 𝑛𝑛 =
𝑛𝑛 1

𝑛𝑛 + 1 𝑛𝑛 + 1
𝑦𝑦 𝑛𝑛 − 1 + 𝑥𝑥(𝑛𝑛)

The output of a causal and practically realizable 
system recursive system can be expressed in 
general as
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If y(n) of a system depends only on the present and past inputs, then

Such a system is called non-recursive.

Recursive and Non-recursive discrete-time system (Cont.)

113



Correlation of DT signals

 A mathematical operation that closely resembles convolution is correlation. In convolution the input

and impulse response are involved whereas in correlation two signal sequences are involved.

 The correlation between the two signals is to measure the degree to which the two signals are similar

and thus to extract some information that depends to a large extent on the application.

 Correlation of signals is often uncounted in radar, sonar, digital communications, geology and other 

areas in science and engineering.
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Application of Correlation
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Correlation in radar and active sonar applications

x(n) is the transmitted signal and y(n) is 
the received signal.
If a target is present y(n) will be

Where 𝛼𝛼 is some attenuation factor representing
the signal loss involved in the round-trip
transmission of the signal x(n), D is the round trip
delay and w(n) represents additive noise that is
picked up by the antenna and any noise generated
by the electronic components and amplifier.
If there is no target,
y(n)=w(n)

Comparing two signal x(n) and y(n) radar detects whether a target is present or not and also
calculate the distance if target is present. In practice, the signal x(n-D) is heavily corrupted by the
additive noise to the point where a visual inspection of y(n) does not reveal the presence or
absence of the desired signal reflected from the target. Correlation provides us with a means for
extracting this important information from y(n).



Correlation in radar and active sonar applications (Cont.)

Application of Correlation



Application of Correlation (Cont.)

In digital Communication

Digital communication is another area where correlation is often used. In digital communications the

information to be transmitted from one point to another is usually converted to binary form, that is, a

sequence of zeros and ones, which are then transmitted to the intended receiver.

Signal sequence to transmit a logic 0: 𝑥𝑥0(𝑛𝑛) for 0 ≤ 𝑛𝑛 ≤ 𝐿𝐿 − 1

Signal sequence to transmit a logic 1: 𝑥𝑥1(𝑛𝑛) for 0 ≤ 𝑛𝑛 ≤ 𝐿𝐿 − 1

L represents the number of samples in each sequence.

The received signal can be represented as-

𝑦𝑦 𝑛𝑛 = 𝑥𝑥𝑖𝑖 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑖𝑖 = 0,1, 0 ≤ 𝑛𝑛 ≤ 𝐿𝐿 − 1
w(n) represents the additive noise.

After receiving y(n), the receiver compares the received signal y(n ) with both 𝑥𝑥0(𝑛𝑛) and 𝑥𝑥1(𝑛𝑛) to

determine which of the two signals better matches y(n). The comparison process is performed by means

of the correlation operation.
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Crosscorrelation and Autocorrelation

𝑟𝑟𝑥𝑥𝑦𝑦 𝑙𝑙 = 𝑥𝑥 𝑛𝑛 𝑦𝑦 𝑛𝑛 − 𝑙𝑙 , 𝑙𝑙 = 0, ±1, ±2, … …
𝑛𝑛=−∞

Or, equivalently, as

𝑟𝑟𝑥𝑥𝑦𝑦

∞

𝑙𝑙 = 𝑥𝑥 𝑛𝑛 + 𝑙𝑙 𝑦𝑦 𝑛𝑛 ,
𝑛𝑛=−∞

𝑙𝑙 = 0, ±1, ±2, … …

Crosscorrelation

Suppose that we have two real signal sequence x(n) and y(n) each of which has finite energy.The 
crosscorrelation of x(n) and y(n) is a sequence 𝑟𝑟𝑥𝑥𝑦𝑦(𝑙𝑙) , which is defined as

∞

Autocorrelation

In special case where both signal sequences are same (i.e. y(n)=x(n)), we have the 
autocorrelation of x(n), which is defined as the sequence

𝑟𝑟𝑥𝑥𝑥𝑥

∞

𝑙𝑙 = 𝑥𝑥 𝑛𝑛 𝑥𝑥 𝑛𝑛 − 𝑙𝑙 ,
𝑛𝑛=−∞
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𝑙𝑙 = 0, ±1, ±2, … …



Difference between Correlation and Convolution

 In the computation of convolution, one of the sequence is folded, then shifted, then

multiplied by the other sequence to form the product sequence for that shift, and finally, the

values of the product sequence are summed.

 Except for the folding operation, the computation of the crosscorrelation sequence involves

the same operation: shifting one of the sequence, multiplying the two sequence, and

summing over all values of the product sequence.

 So, if we first fold a sequence y(n) to y(-n) and find the convolution between two sequences

x(n) and y(-n), it results crosscorrelation between x(n) and y(n).

𝑟𝑟𝑥𝑥𝑦𝑦 𝑙𝑙 = 𝑥𝑥 𝑙𝑙 ∗ 𝑦𝑦(−𝑙𝑙)

119 Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



Determine the crosscorrelation sequence 𝑟𝑟𝑥𝑥𝑦𝑦(𝑙𝑙) of the sequences

𝑥𝑥(𝑛𝑛) = {2, −1,3,7,1,2, −3}
↑

𝑦𝑦(𝑛𝑛) = {1, −1,2, −2,4,1, −2, 5}
↑

Example of determining Correlation Sequence

𝑟𝑟𝑥𝑥𝑦𝑦

∞

𝑙𝑙 = 𝑥𝑥 𝑛𝑛 𝑦𝑦 𝑛𝑛 − 𝑙𝑙 ,
𝑛𝑛=−∞

𝑙𝑙 = 0, ±1, ±2, … …

n -4 -3 -2 -1 0 1 2 3 l

x(n) 2 -1 3 7 1 2 -3 0 l=0

y(n) 1 -1 2 -2 4 1 -2 5

∑x(n)y(n) 2 1 6 -14 4 2 6 0 7

y(n+1) -1 2 -2 4 1 -2 5 0 l=-1

∑x(n)y(n+1) -2 -2 -6 28 1 -4 -15 0 0

y(n+2) 2 -2 4 1 -2 5 0 0 l=-2

∑x(n)y(n+2) 4 2 12 7 -2 10 0 0 33

𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦

0 = 7
−1 = 0
−2 = 33
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Solution:



n -4 -3 -2 -1 0 1 2 l

x(n) 2 -1 3 7 1 2 -3

y(n+3) -2 4 1 -2 5 l=-3

∑x(n)y(n+3) -4 -4 3 -14 5 -14

y(n+4) 4 1 -2 5 0 l=-4

∑x(n)y(n+4) 8 -1 -6 35 0 36

y(n+5) 1 -2 5 0 l=-5

∑x(n)y(n+5) 2 2 15 19

y(n+6) -2 5 l=-6

∑x(n)y(n+6) -4 -5 -9

y(n+7) 5 l=-7

∑x(n)y(n+7) 10 10

𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦

−3 = -14
−4 = 36
−5 = 19
−6 = -9
−7 = 10
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For n<-7
𝑟𝑟𝑥𝑥𝑦𝑦 = 0

Example of determining Correlation Sequence (Cont.)



n -3 -2 -1 0 1 2 l

x(n) -1 3 7 1 2 -3

y(n-1) 1 -1 2 -2 4 1 l=1

∑x(n)y(n-1) -1 -3 14 -2 8 -3 13

y(n-2) 1 -1 2 -2 4 l=2

∑x(n)y(n-2) 3 -7 2 -4 -12 -18

y(n-3) 1 -1 2 -2 l=3

∑x(n)y(n-3) 7 -1 4 6 16

y(n-4) 1 -1 2 l=4

∑x(n)y(n-4) 1 -2 -6 -7

y(n-5) 1 -1 l=5

∑x(n)y(n-5) 2 3 5

y(n-6) 1 l=6

∑x(n)y(n-6) -3 -3

𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦
𝑟𝑟𝑥𝑥𝑦𝑦

1 = 13
2 = -18
3 = 16
4 = -7
5 = 5
6 = -3

Example of determining Correlation Sequence (Cont.)
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For n>6
𝑟𝑟𝑥𝑥𝑦𝑦 = 0

The maximum similarity between two
signals x(n) and y(n) obtained when
y(n) is delayed by 4 positions.
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Z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series

𝑋𝑋 𝑧𝑧
∞

= 𝑥𝑥(𝑛𝑛)𝑧𝑧−𝑛𝑛

𝑛𝑛=−∞
Where z is a complex variable.The relation sometimes called the direct z-transform because it 

transforms the time-domain signal x(n) into its complex-plane representation X(z).

The direct Z-Transform

Where,
‘r’ is a real number
𝑒𝑒𝑗𝑗𝜔𝜔is Euler's Number
𝜔𝜔 is the angular frequency in radians per sample.

−𝒏𝒏

𝐳𝐳 = 𝐫𝐫𝐞𝐞𝐣𝐣𝛚𝛚

𝒛𝒛−𝒏𝒏 = 𝒓𝒓−𝒏𝒏𝐞𝐞−𝐣𝐣𝛚𝛚𝐧𝐧

= 𝒓𝒓 [𝒄𝒄𝒐𝒐𝒔𝒔 𝝎𝝎𝒏𝒏 − 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏(𝝎𝝎𝒏𝒏)]

The z-transform of a discrete-time signal x(n) is denoted by

𝑋𝑋 𝑧𝑧 ≡ 𝑍𝑍 𝑥𝑥 𝑛𝑛

Whereas the relationship between x(n) and x(z) is indicated by

𝑍𝑍
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𝑥𝑥 𝑛𝑛 𝑋𝑋(𝑧𝑧)



4

Plot of 𝑟𝑟−𝑛𝑛𝑐𝑐𝑜𝑜𝑠𝑠 𝜔𝜔𝑛𝑛 when r<1 and

4
𝜔𝜔 = 𝜋𝜋 per samples

Plot of 𝑟𝑟−𝑛𝑛𝑐𝑐𝑜𝑜𝑠𝑠 𝜔𝜔𝑛𝑛 when r>1 and
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4
𝜔𝜔 = 𝜋𝜋 per samples

Z-Transform
Significance of 𝒛𝒛−𝒏𝒏
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Plot of 𝑟𝑟−𝑛𝑛𝑐𝑐𝑜𝑜𝑠𝑠 𝜔𝜔𝑛𝑛 when r=1 and

4
𝜔𝜔 = 𝜋𝜋 per samples

Z-Transform
Significance of 𝒛𝒛−𝒏𝒏 𝒛𝒛−𝒏𝒏 = 𝒓𝒓−𝒏𝒏𝐞𝐞−𝐣𝐣𝛚𝛚𝐧𝐧

= 𝒓𝒓−𝒏𝒏[𝒄𝒄𝒐𝒐𝒔𝒔 𝝎𝝎𝒏𝒏 − 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏(𝝎𝝎𝒏𝒏)]
When,

r>1, 𝒛𝒛−𝒏𝒏 has exponentially decreasing oscillation

r<1, 𝒛𝒛−𝒏𝒏 has exponentially increasing oscillation

r=1, 𝒛𝒛−𝒏𝒏 has oscillation of constant amplitude.

So we can say
𝒛𝒛−𝒏𝒏 represents a set of oscillating

𝑟𝑟 = 𝑧𝑧 = 𝑎𝑎2 + 𝑏𝑏2

components of constant or increasing or 
decreasing amplitude based on value of z

z = rejω = a + jb
r is the magnitude or modulus of z controls the 
magnitude (increasing/decreasing/constant) of
oscillation

𝜔𝜔 = ∠𝑧𝑧 = tan−1
𝑎𝑎

𝜔𝜔 is the angle or argument or phase controls 
frequency of oscillation.

𝑏𝑏
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Significance of Z-Transform
Argand Diagram

Re(z)

-j

o Any point in the unit circle is associated with a complex number z which has a magnitude of 1 
(𝑧𝑧−𝑛𝑛 has oscillation of constant amplitude)

o If z lies on the real axis of the argand diagram the signal 𝑧𝑧−𝑛𝑛won’t oscillate.
* At point 1+0j, 𝑧𝑧−𝑛𝑛 has a constant amplitude of 1.
* Increase exponentially, if it lies between 0 and 1.
* decrease exponentially if it lies after 1.

o If z lies outside of unit circle (but not in real axis) 𝑧𝑧−𝑛𝑛 has oscillation with exponentially
decreasing amplitude.

o If z lies inside of unit circle (but not in real axis) 𝑧𝑧−𝑛𝑛 has oscillation with exponentially increasing 
amplitude.

-1

1+0j

1

Im(z)
j

Unit Circle
𝐳𝐳 = 𝐞𝐞𝐣𝐣𝛚𝛚
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Significance of Z-Transform
Significance of Z-Transform

𝑋𝑋 𝑧𝑧

7
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∞

= 𝑥𝑥(𝑛𝑛)𝑧𝑧−𝑛𝑛

𝑛𝑛=−∞

In the above equation, x[n] is multiplied by 𝑧𝑧−𝑛𝑛(set of oscillating components of constant or increasing 

or decreasing amplitude based on value of z), very similar to correlation.

Z-transform is the measure of similarities of discrete time sequence x[n] with all the frequency of

oscillations associate with 𝑧𝑧−𝑛𝑛. Z-transform identifies the presence of exponentially increasing or 

decreasing oscillations in the signal x[n].

Z-Transform of Impulse response

Taking the z-transform of a systems impulse response we get the following

o By identifying the presence of increasing and decreasing oscillations in the impulse response of a 

system we can determine if the system is stable or unstable.

o By identifying the presence of sinusoids in the impulse response of a system we can determine the 

systems frequency response. Note that a impulse input has all types of frequency components.

13
1



Region of Convergence (ROC) in Z-Transform
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∞

1. The roots of the numerator polynomial are referred to as the zeros of X(z), and

2. The roots of the denominator polynomial are referred to as the poles of X(z).

Note that no poles of X(z) can occur within the region of convergence since the z-transform does
not converge at a pole.

Furthermore, the region of convergence is bounded by poles.

X(z) = ∑x(n)z−n

n=−∞

o Since the z-transform is an infinite power series, it exists only for those value of z for which this

series converges.

o The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a 

finite value.Thus any time we cite a z-transform we should also indicates its ROC.

Poles and Zeros

When X(z) is a rational function, i.e., a ration of polynomials in z, then:



13
3
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Characteristic Families of Signals with their corresponding ROCs
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Example 3.1.2 (Prokis)
Determine the z-transform of the signal

Using the geometric series,

We can write,

Solution:

x(n) can be expressed as

The z transform of x(n):
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Here 𝑋𝑋(𝑧𝑧) is finite if the sequence 𝑥𝑥(𝑛𝑛)𝑟𝑟−𝑛𝑛 is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the range of values of r for 

which the sequence 𝑥𝑥(𝑛𝑛)𝑟𝑟−𝑛𝑛 is absolutely summable.

136
Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

ROC for Causal and Anticausal components of X(z)



ROC for Causal and Anticausal components of X(z)- Cont.

If X(z) converges in some region of complex plane, both summations in the above expression must be 

finite in that region.

If the first sum in expression converges, there must exist values of r small enough such that the

product sequence 𝑥𝑥 −𝑛𝑛 𝑟𝑟𝑛𝑛, 1 ≤ 𝑛𝑛 < ∞, is absolutely summable.Therefore the ROC for the 1st

some consists of all points in a circle of some radius 𝑟𝑟1, where 𝑟𝑟1 ≤ ∞.

The second sum converges if there exist values of r large enough such that the product sequence,

𝑥𝑥(𝑛𝑛) , 0 ≤ 𝑛𝑛 ≤ ∞, is absolutely summable.The ROC for the second sum consists all points outside
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𝑟𝑟𝑛𝑛

of circle of radius 𝑟𝑟 > 𝑟𝑟2.

ROC of X(z) is the common region in the z-plane (𝑟𝑟1 < 𝑟𝑟 < 𝑟𝑟2) where both sums are finite.



ROC for Causal and Anticausal components of X(z)- Cont.
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ROC: Anticausal Component ROC: Causal Component



Example 3.1.3 (Prokis)
Determine the z-transform of the signal

Solution:

1
1−∝𝑧𝑧−1

. Thus we have the z-If ∝ 𝑧𝑧−1 < 1 or equivalently, 𝑧𝑧 > ∝ , this power series converges to 
transform pair

If ∝= 1, we obtained the z-transform of unit step signal
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Example 3.1.4 (Prokis)
Determine the z-transform of the signal

Solution:

Provided that 𝛼𝛼−1𝑧𝑧 < 1 or, equivalently, 𝑧𝑧 < 𝛼𝛼 .Thus

Where, l=-n

Using the formula,

when 𝐴𝐴 < 1 gives
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Characteristic Families of Signals with their corresponding ROCs
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o Z-transform does not uniquely specify the signal in the time domain without ROC.

o From the previous two examples, we see that the causal signal 𝜶𝜶𝒏𝒏𝒖𝒖(𝒏𝒏) and the

anticausal signal −𝜶𝜶𝒏𝒏𝒖𝒖(−𝒏𝒏 − 𝟏𝟏) have identical closed-form expressions for the

z-transform.
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o A discrete-time signal x(n) is uniquely determined by not only its z-transform X(z),

but also the region of convergence of X(z).

o The ROC of a causal signal is the exterior of a circle of some radius 𝑟𝑟2while the

ROC of an anticausal signal is the interior of a circle of some radius 𝑟𝑟1

Uniqueness of Z-Transform



Example 3.1.5 (Prokis)

Determine the z-transform of the signal

Solution:

The first power series converges if 𝛼𝛼𝑧𝑧−1 < 1 or 𝑧𝑧 > 𝛼𝛼 .The second power series converges if

𝑏𝑏−1𝑧𝑧 < 1 or 𝑧𝑧 < 𝑏𝑏 .

In determining the convergence of X(z), we consider two different cases:

Case 1 𝒃𝒃 < 𝜶𝜶 : In this case the two ROC above do not overlap, so X(z) does not exist.

Case 1 𝒃𝒃 > 𝜶𝜶 : In this case there is a ring in the z-plane where both power series converge
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simultaneously.



Example 3.1.5 (Prokis)-Cont.
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Properties of Z-Transform 

Linearity

Examples 3.2.1 Determine the z-transform and the ROC of the signal

Solution:

If we define the signals:

Then x(n) can be written as

According to linearity property, the z-transform is
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We know from the Example 3.1.3,

By setting 𝛼𝛼 = 2 and 𝛼𝛼 = 3, we obtain the z-transform of 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛)

The intersection of the ROC of 𝑋𝑋1(𝑧𝑧) and 𝑋𝑋2(𝑧𝑧) is 𝑧𝑧 > 3.Thus the overall transform X(z) is

Properties of Z-Transform (Cont.)

Examples 3.2.2 Determine the z-transform of the signals
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Properties of Z-Transform (Cont.)

Solution (a): By using Eulers identity the signal x(n) can be expressed as

Using linearity property of z-transform,

If we set 𝛼𝛼 = 𝑒𝑒±𝑗𝑗𝜔𝜔0 ( 𝛼𝛼 = 𝑒𝑒±𝑗𝑗𝜔𝜔0 = 1), we obtain
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After some algebraic manipulation-

(b) See the solution in book



Properties of Z-Transform (Cont.) 

Time Shifting

If

then

The ROC of 𝑧𝑧−𝑘𝑘𝑋𝑋(𝑧𝑧) is the same as that of X(z) except for z=0 if K>0, and Z=∞ if k<0.

See example 3.2.3 and 3.2.4

Scaling in z-domain

If

then

For any constant ‘a’, real or complex.
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Solution (a): In example 3.2.2 (a) we have determined the z-transform of (cos 𝜔𝜔0𝑛𝑛) 𝑢𝑢(𝑛𝑛)

Using time scaling property we get

Solution (b): In example 3.2.2 (b) we have determined the z-transform of (sin 𝜔𝜔0𝑛𝑛) 𝑢𝑢(𝑛𝑛)
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Using time scaling property we get

Properties of Z-Transform (Cont.)



Properties of Z-Transform (Cont.) 

Time Reversal

If 

then

Example 3.2.6: Determine the z-transform of the signal 𝑥𝑥 𝑛𝑛 = 𝑢𝑢(−𝑛𝑛)

In example 3.1.3 we have determined the z-transform of unit step signal u(n)
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Using time reversal property we get



Properties of Z-Transform (Cont.) 
Differentiation in z-domain

If

then BothTransform have the same ROC

Example 3.2.7: Determine the z-transform of the signal 𝑥𝑥 𝑛𝑛 = 𝑛𝑛𝑎𝑎𝑛𝑛𝑢𝑢(𝑛𝑛)

The signal 𝑥𝑥(𝑛𝑛) can be expressed as 𝑛𝑛𝑥𝑥1(𝑛𝑛), where 𝑥𝑥1 𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑢𝑢(𝑛𝑛). In example 3.1.3, we 

have already determine z-transform of 𝑎𝑎𝑛𝑛𝑢𝑢(𝑛𝑛).

Using differentiation in z-domain property we get
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If we set a=1, we find the z transform of the unit ramp signal

See Example 3.2.8 (Prokis)



Properties of Z-Transform (Cont.) 

Convolution of two sequences

Example 3.2.9: Compute the convolution 𝑥𝑥 𝑛𝑛 of the signals

The z-transform of 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛)
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Multiplication of 𝑋𝑋1(𝑧𝑧) and 𝑋𝑋2(𝑧𝑧)



Some common z-transform Pair
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Poles and Zeros

The zeros of a z-transform X(z) are the values of z for which X(z)=0.The poles of a z-transform are the

values of z for which X(z)=∞. If X(z) is a rational function, then

 We can express X(z) by poles –zeros

plot in the complex plane, which shows

the location of poles by cross (X) and

location of zeros by circle (○)

 The multiplicity of multiple order

poles or zeros is indicated by a number

close to corresponding cross or circle.

 Obviously, by definition, the ROC of a z-transform should not contain any poles.
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Example 3.3.1

Determine the pole-zero plot for the signal
𝑥𝑥 𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑢𝑢 𝑛𝑛 , 𝑎𝑎 > 0

The z-transform of the signal
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Thus X(z) has one zero at 𝑧𝑧1 = 0 and one pole at

𝑝𝑝1 = 𝑎𝑎. Note that the pole 𝑝𝑝1 = 𝑎𝑎 is not included in

the ROC since the z transform does not converge at a

pole.

Pole-zero Plot



Example 3.3.2

Determine the pole-zero plot for the signal

𝑥𝑥 𝑛𝑛 = 𝑎𝑎𝑛𝑛,
0,

0 ≤ 𝑛𝑛 ≤ 𝑀𝑀 − 1
𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒

The z-transform of the signal

Pole-zero Plot

Where, a>0

Assume, M=8

Since a>0, the equation 𝑧𝑧𝑀𝑀 = 𝑎𝑎𝑀𝑀 has M roots at

The zero 𝑧𝑧0 = 𝑎𝑎 cancels the pole at z=a.Thus

1 Pole and 1 zero
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Which has M-1 poles and M-1 zeros. Note that the ROC is the
enter z-plane except z=0 because of the M-1 poles located at the
origin.



Pole location andTime-Domain Behavior for Causal Signals
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Pole location andTime-Domain Behavior for Causal Signals (Cont.)
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Pole location andTime-Domain Behavior for Causal Signals (Cont.)
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Inversion of the z-Transform
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There are three methods for evaluating the inverse z-Transform

1) Direct evaluation by contour integration.

2) Expansion into a series of terms, in the variables 𝑧𝑧−1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑧𝑧.

3) Partial fraction expansion and table lookup



Inverse z-Transform by Power Series Expansion

Since the ROC is the exterior of a circle, we expect x(n) to be a causal signal.Thus we seek a power 
series expansion in negative power of z.

𝑋𝑋 𝑧𝑧 =
1

1 − 3 𝑧𝑧−1 + 1 𝑧𝑧−2
2 2

3 1 3 1(1 − 𝑧𝑧 + 𝑧𝑧 ) + 𝑧𝑧 − 𝑧𝑧
= 2 2 2 2

−1 −2 −1 −2

−13 11 − 2 𝑧𝑧 + 2 𝑧𝑧−2

= 1 +
3 𝑧𝑧−1 − 1 𝑧𝑧−2
2

3
2

11 − 2 𝑧𝑧−1 + 2 𝑧𝑧−2
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= 1 + 2 21 − 3 𝑧𝑧−1 + 1 𝑧𝑧−2
2 2 4 4

3 𝑧𝑧−1 − 1 𝑧𝑧−2 + 9 𝑧𝑧−2 − 3 𝑧𝑧−3

3 11 − 2 𝑧𝑧 + 2 𝑧𝑧−1 −2
= 1 +

3
2

𝑧𝑧−1 +
7 𝑧𝑧−2 − 3 𝑧𝑧−3

1 −
4

3
2

4
1
2𝑧𝑧−1 + 𝑧𝑧−2

3
2

−1= 1 + 𝑧𝑧 + 4
7 𝑧𝑧−2

21 − 3 𝑧𝑧−1 + 1 𝑧𝑧−2
4 8 8− 3 𝑧𝑧−3 + 21 𝑧𝑧−3 − 7 𝑧𝑧−4

2
3
2

−1 1
21 − 𝑧𝑧 + 𝑧𝑧−2

= 1 + 3 𝑧𝑧−1 + 7 𝑧𝑧−2 +
2 4

15 𝑧𝑧−3 − 7 𝑧𝑧−4
8

3
8

11 − 2 𝑧𝑧−1 + 2 𝑧𝑧−2

3 7 15−1 −2 −3= 1 + 2 𝑧𝑧 + 4 𝑧𝑧 + 8 𝑧𝑧 +
7 45−4 −4 15− 8 𝑧𝑧 + 16 𝑧𝑧 − 16 𝑧𝑧−5

3 11 − 2 𝑧𝑧 + 2 𝑧𝑧−1 −2

= 1 + 3 𝑧𝑧−1 + 7 𝑧𝑧−2 + 15 𝑧𝑧−3 + 31 𝑧𝑧−4 +……
2 4 8 16

𝑥𝑥 𝑛𝑛 = {1, , ,
3 7 15 31
2 4 8 16

, , … }

Inverse z-Transform by Power Series Expansion (Cont.)
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Inverse z-Transform by Power Series Expansion (Cont.)
(b) In this case the ROC is the interior of circle. Consequently this signal x(n) is anticausal.To obtain 

a power series expansion in positive powers of z, we perform the long division in the following way



Inverse z-Transform by Partial-Fraction Expansion

Example 3.4.8: Determine the inverse z-transform of

Solution:

Setting z=1, in the above equation, we get

So,

Setting z=0.5, in the above equation, we get

So,
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I.(a)
ROC

𝒛𝒛 > 𝟏𝟏, the signal x(n) is causal, both term of above equation will be causal terms

𝑥𝑥 𝑛𝑛 = 2 1 𝑛𝑛𝑢𝑢 𝑛𝑛 − 0.5𝑛𝑛𝑢𝑢 𝑛𝑛 = 2 − 0.5𝑛𝑛 𝑢𝑢(𝑛𝑛)

(b) ROC

terms:

𝒛𝒛 < 𝟎𝟎. 𝟓𝟓, the signal x(n) is anticausal, both term of above equation will be anticausal

Inverse z-Transform by Partial-Fraction Expansion (Cont.)

𝑥𝑥 𝑛𝑛 = −2 1 𝑛𝑛𝑢𝑢 −𝑛𝑛 − 1 + 0.5𝑛𝑛𝑢𝑢 −𝑛𝑛 − 1 = 0.5𝑛𝑛 − 2 𝑢𝑢(−𝑛𝑛 − 1)

(c) ROC 𝟎𝟎. 𝟓𝟓 < 𝒛𝒛 < 𝟏𝟏, which implies that the signal x(n) is two sided.

Thus one of the terms corresponds to a causal signal and the other to an anticausal signal.

Obviously, the ROC is the overlapping of the region 𝑧𝑧 > 0.5 and 𝑧𝑧 < 1. Hence the pole 0.5 

provides the causal part and pole 1 anticausal part.

𝑥𝑥 𝑛𝑛 = −2 1 𝑛𝑛𝑢𝑢 −𝑛𝑛 − 1 − 0.5𝑛𝑛𝑢𝑢 𝑛𝑛
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Practice Problem:

Example 3.4.9: Determine the causal signal x(n) whose z-transform is given by

𝑥𝑥 𝑧𝑧
1 + 𝑧𝑧−1

= 1 − 𝑧𝑧−1 + 0.5𝑧𝑧−2

Example 3.4.10: Determine the causal signal x(n) having the z-transform

𝑥𝑥 𝑧𝑧 =
1

(1 + 𝑧𝑧−1)(1 − 𝑧𝑧−1)2

Inverse z-Transform by Partial-Fraction Expansion (Cont.)
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(i)Ability to implement finite impulse response (FIR) and infinite impulse

response (IIR) systems using different structures in terms of block diagram

(or signal flow graph).

(ii)Ability to determine the system transfer function and difference equation
given the

corresponding block diagram (or signal flow graph) representation.
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Chapter Intended Learning Outcomes



FIR System

Finite Impulse Response (FIR) System

In signal processing, a finite impulse response (FIR) system is a system whose impulse response (or 

response to any finite length input) is of finite duration, because it settles to zero in finite time.

𝑏𝑏𝑛𝑛,ℎ 𝑛𝑛 = 0,
0 ≤ 𝑛𝑛 ≤ 𝑀𝑀 − 1

𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

𝑦𝑦 𝑛𝑛

where M is some positive integer.This is called a finite impulse response (FIR) system because the non-

zero part of the impulse response (𝑏𝑏𝑘𝑘) is finite in extent. Because of that property, the convolution sum

becomes a finite sum,
𝑀𝑀−1
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= ℎ 𝑘𝑘 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑘𝑘=0



Structures for FIR System

In general, FIR system is described by the difference equation
𝑴𝑴−𝟏𝟏

𝒚𝒚 𝒏𝒏 = 𝒃𝒃𝒌𝒌 𝒙𝒙(𝒏𝒏 − 𝒌𝒌)
𝒌𝒌=𝟎𝟎

Or, equivalently, by the system function

𝑴𝑴−𝟏𝟏

𝑯𝑯 𝒛𝒛 = 𝒃𝒃𝒌𝒌 𝒛𝒛−𝒌𝒌

𝒌𝒌=𝟎𝟎

Where the coefficient {𝑏𝑏𝑘𝑘}, is identical to the unit sample (impulse) response of the FIR system, that 
is

𝑏𝑏𝑛𝑛,
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ℎ 𝑛𝑛 = 0,
0 ≤ 𝑛𝑛 ≤ 𝑀𝑀 − 1

𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

Methods for Implementing FIR System

1) Direct form
2) Cascade form realization
3) Frequency sampling realization
4) Lattice Realization



Structures of FIR System: Direct form realization
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 This structure requires M-1 memory locations for storing the M-1 previous inputs and has a

complexity of M multiplications and M-1 additions per output points.

 The direct-form realization is often called a transversal or tapped-delay-line filter.

Direct form Realization



Direct form realization of linear-phase FIR System

 When the FIR system has linear phase, the unit sample response of the system satisfies either the 

symmetry or asymmetry condition ℎ 𝑛𝑛 = ±ℎ 𝑀𝑀 − 1 − 𝑛𝑛

 For such as system the number of multiplications is reduced from M to M/2 for M even and to 

(M-1)/2 for M odd.

Structures of FIR System: Direct form realization
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Problem: Consider an FIR system with system function
(a) 𝐻𝐻 𝑧𝑧 = 1 + 3𝑧𝑧−1 + 2𝑧𝑧−3 − 4𝑧𝑧−4

4 2 4 2 4
(b) 𝐻𝐻 𝑧𝑧 = 1 + 1 𝑧𝑧−1 + 3 𝑧𝑧−2 + 1 𝑧𝑧−3 + 1 𝑧𝑧−4

Sketch the direct form realization of the system.

(a)

𝐻𝐻 𝑧𝑧 = 1
4

1 + 𝑧𝑧−4 + 1 (𝑧𝑧−1+𝑧𝑧−3) + 3 𝑧𝑧−2
2 4
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(b) The system is a linear phase FIR system. It can be expressed as

Problems on Direct form realization of FIR System



Problem:

(1) Determine a direct form realization for the following linear phase discrete time system

(a) ℎ 𝑛𝑛 = {1,2,3,4,3,2,1}
↑

(b) ℎ 𝑛𝑛 = {1,2,3,3,2,1}
↑

(2) Consider an FIR system with system function

𝐻𝐻 𝑧𝑧 = 1 + 2.88𝑧𝑧−1 + 3.4048𝑧𝑧−2 + 1.74𝑧𝑧−3 + 0.4𝑧𝑧−4

Sketch the direct form realization of the system. How many additions and multiplications

instructions are required per output point? Also determine the number of memory block.
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Problems on Direct form realization of FIR System



Cascade form structures of FIR System

In cascade realization of FIR system H(z) is factorized into second order FIR system so that

𝑴𝑴−𝟏𝟏 𝑲𝑲

𝑯𝑯 𝒛𝒛 = 𝒃𝒃𝒌𝒌 𝒛𝒛−𝒌𝒌 = 𝑯𝑯𝒌𝒌(𝒛𝒛)
𝒌𝒌=𝟎𝟎 𝒌𝒌=𝟏𝟏

where

and k is the integer part of (M+1/2).
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Structures of FIR System: Cascade form realization



Structures of FIR System: Cascade form realization
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Why second-order polynomial instead of first-order polynomial?

The zeros of H(z) are grouped in pairs to produce the second-order FIR systems of the form

It is always desirable to form pairs of complex-conjugate roots so that the coefficients {𝑏𝑏𝑘𝑘𝑖𝑖} in the

second order subsystems are real valued. By this way we can avoid the complex multiplications. On the

other hand, real-valued roots can be paired in any arbitrary manner. The cascade-form realization along

with the basic second-order section is shown below:

This is the basic building
block to implement
cascade form FIR
structures



To get the second order subsystem with real-valued coefficients, we group the sections of complex 
conjugates together

Example: Determine a cascade form realization for the following discrete time system 

with system function

Solution: To factorize H(z), we use the MATLAB command roots([1 1 1 1 1]) to solve for the roots (or 

use calculator to find the roots of the polynomial H(z)):

Example on Cascade form realization of FIR System
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Example on Cascade form realization of FIR System (Cont.)
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If the impulse response of a system is infinite, the system is called IIR system.

The impulse response is “infinite” because there is feedback in the filter; if you put in an impulse (a

single “1” sample followed by many “0” samples), an infinite number of non-zero values will come

out (theoretically.)

In general, IIR system is described by the difference equation
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IIR System

Or, equivalently, by the system function

Methods for Implementing IIR System

1) Direct form (Direct form I and Direct form II)
2) Cascade form realization
3) Parallel form realization
4) Lattice structures
5) Lattice-ladder structures



Structures for IIR System: Direct form I

Direct form structures (Direct form I realization)

This structure requires M+N+1

multiplications, M+N additions and

M+N+1 memory locations.
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Structures for IIR System: Direct form II
Direct form structures (Direct form II realization)/Canonic Form

Let us consider a first order system

The nonrecursive part of the system 

The recursive part of the system

However, it is observed that if we interchange the

order of the cascaded LTI system, the overall

system response remain the same. Thus if we

interchange the order of the recursive and

nonrecursive system, we get
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Structures for IIR System: Direct form II

𝑤𝑤 𝑛𝑛

Direct form structures (Direct form II realization)/ Canonic Form

The difference equation to describe the 

general IIR system can be written as:

𝑀𝑀

𝑉𝑉 𝑛𝑛 = 𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑘𝑘=0

𝑁𝑁

𝑦𝑦 𝑛𝑛 = − 𝑎𝑎𝑘𝑘𝑦𝑦 𝑛𝑛 − 𝑘𝑘 + 𝑉𝑉(𝑛𝑛)
𝑘𝑘=1

Interchanging the order of recursive and 
nonrecursive part we can write

𝑁𝑁

𝑦𝑦 𝑛𝑛
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= − 𝑎𝑎𝑘𝑘𝑤𝑤 𝑛𝑛 − 𝑘𝑘 + 𝑥𝑥(𝑛𝑛)
𝑘𝑘=1
𝑀𝑀

= 𝑏𝑏𝑘𝑘𝑤𝑤(𝑛𝑛 − 𝑘𝑘)
𝑘𝑘=0 Direct form II (considering N=M)

Multiplications and additions are same as direct form I. But the required memory location is {M,N}
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Structures for IIR System: Problem

1𝑦𝑦 𝑛𝑛 − 3 𝑦𝑦 𝑛𝑛 − 1 + 1 𝑦𝑦 𝑛𝑛 − 2 = 𝑥𝑥 𝑛𝑛 + 𝑥𝑥(𝑛𝑛 − 1)
4 8 3

𝐻𝐻 𝑧𝑧 = 31 + 1 𝑧𝑧−1

3 11 − 4 𝑧𝑧−1 + 8 𝑧𝑧−2

Problem: For the following system

a)

18
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b)

Direct form I Direct form II

(a) Determine its system function.
(b) Obtained the direct form I and direct form II structures.

Solution:
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Structures for IIR System: Problem
Problem: Draw the block diagrams using the direct form I and canonic forms for the LTI system 
whose transfer function is:
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Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

Solution:

Direct form I

Canonic form/ 
Direct form II



Structures for IIR System: Cascade form structures

Cascade form structures

We can factorize the numerator and denominator polynomials of IIR system function in terms of 
second-order polynomial system functions as:

𝒌𝒌

= 𝑯𝑯𝒌𝒌(𝒛𝒛)
𝒌𝒌=𝟏𝟏

Without the loss of generality 
we assume that 𝑁𝑁 ≥ 𝑀𝑀

Where k is the integer part of (N+1)/2. 𝐻𝐻𝑘𝑘(𝑧𝑧) has the general form
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Cascade form structures

Each of the second order subsystem can be realized in either the direct or canonic form. Nevertheless, 

the canonic form is preferred because it requires the minimum number of delay elements.

189
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Structures for IIR System: Cascade form structures



Example 7.3.1(Prokis): Determine the cascade realization of the system described by the

To form second order system we can make pair of 1st order system. One possible pairing of pole and 

zeros is given below where the pairs are formed in such way that the coefficients are real-

Structures for IIR System: Cascade form structures Problem

system function

𝐻𝐻 𝑧𝑧 =

Solution:

1 210 1 − 2 𝑧𝑧 1 − 3 𝑧𝑧 1 + 2𝑧𝑧−1 −1 −1

3 1 1 11 − 4 𝑧𝑧 (1 − 8 𝑧𝑧 ) 1 − (2 + 𝑗𝑗 2)𝑧𝑧−1 −1 −1 1 − 1 1
(2 − 𝑗𝑗 2)𝑧𝑧−1
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Structures for IIR System: Parallel form structures

Parallel form structures

A parallel-form realization of an IIR system can be obtained by performing a partial-fraction expansion of 

H(z) assuming that 𝑁𝑁 ≥ 𝑀𝑀. By performing partial-fraction expansion of H(z), we obtain the result

Where {𝑝𝑝𝑘𝑘} are the poles, {𝐴𝐴𝑘𝑘} are the coefficients in

the partial-fraction expansion, and the constant C is

defined as 𝐶𝐶 = 𝑏𝑏𝑁𝑁.
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𝑎𝑎𝑁𝑁

The parallel form structure consists of a parallel bank of

single pole filters.



Structures for IIR System: Parallel form structures

Parallel form structures
In general, some of the poles of H(z) may be complex valued. In such a case, the corresponding

coefficients 𝐴𝐴𝑘𝑘 are also complex valued. To avoid multiplications by complex numbers, we can

combine pairs of complex conjugate poles to form two-pole subsystems. Pairs of real-value poles are

also combined arbitrary manner to form two-pole subsystems. Each of these subsystems has the

form

The overall function can be expressed as:

Where K is the integer part of (N+1)/2
Direct form II (canonic) structure of the second-order
section in a parallel IIR system realization is shown in
Fig. which is the basic building block of parallel IIR
system.
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Structures for IIR System: Parallel form structures Problem
Problem: Draw the block diagram using parallel form with second order subsections for a LTI system 
whose transfer function is:
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Solution:

Following the long division we obtained:



Structures for IIR System: Parallel form structures Problem
Problem: Draw the block diagram using parallel form with 1st order subsections for a LTI 
system whose transfer function is:

Solution:

Following the long division we obtained:

This expression is further expanded in

partial fraction to get first-order sections as
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27

Example 7.3.1(Prokis): Determine the parallel realization of the system described by the

Structures for IIR System: Parallel form structures Problem

Solution:

To obtain the parallel form realization, H(z) must be expanded in partial fractions.Thus we have

1 2
10 1 − 2 𝑧𝑧 1 − 3 𝑧𝑧 1 + 2𝑧𝑧−1 −1 −1 = 𝐴𝐴1

1
1 − 8 𝑧𝑧−1

2
1 1

1 − ( + 𝑗𝑗 2)𝑧𝑧 −1 1 − (1 − 𝑗𝑗 1)𝑧𝑧
2 2

−1

2
3

+𝐴𝐴 1 − 4 𝑧𝑧−1 1 1
1 − ( + 𝑗𝑗 )𝑧𝑧−1 1 1

1 − ( − 𝑗𝑗 )𝑧𝑧−1

3
3

+𝐴𝐴 1 − 4 𝑧𝑧−1 1 −1
2
1 1

(1 − 8 𝑧𝑧 ) 1 − ( − 𝑗𝑗 2)𝑧𝑧

2 2

−1 + 𝐴𝐴3
∗ 3

1 − 4 𝑧𝑧

2 2

−1 1 −1 1 1
(1 − 8 𝑧𝑧 ) 1 − (2 + 𝑗𝑗 2)𝑧𝑧 −1

system function

𝐻𝐻 𝑧𝑧 =
1 210 1 − 2 𝑧𝑧 1 − 3 𝑧𝑧 1 + 2𝑧𝑧−1 −1 −1

3 −1 −11 1 11 − 4 𝑧𝑧 (1 − 8 𝑧𝑧 ) 1 − (2 + 𝑗𝑗 2)𝑧𝑧−1 1 − 1 1
(2 − 𝑗𝑗 2)𝑧𝑧−1

After some arithmetic we find that
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The above expression can be written as:
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Recombining pair of poles we get:
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Structures for IIR System: Parallel form structures Problem
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Fourier Analysis
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Fourier analysis convert a time domain signal into frequency

domain signal. Can be divided into 4 types:

a) Aperiodic continuous.

b) Periodic continuous (Fourier Series).

c) Aperiodic Discrete (DTFT).

d) Periodic Discrete (DFT)



20
1

𝑋𝑋 𝑘𝑘 −𝑗𝑗 2𝜋𝜋𝑛𝑛𝑘𝑘
𝑁𝑁

𝑁𝑁−1

= 𝑥𝑥(𝑛𝑛)𝑒𝑒
𝑛𝑛=0

DFT
Discrete FourierTransform

The discrete Fourier transform of a discrete-time signal x(n) is defined as

K=0, 1, ….., N-1

The Inverse Discrete FourierTransform (IDFT) is defined as

𝑥𝑥 𝑛𝑛
1

= 𝑁𝑁 𝑋𝑋(𝑘𝑘)𝑒𝑒 𝑗𝑗2𝜋𝜋𝑛𝑛𝑘𝑘
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

, 𝑛𝑛 = 0,1, … … … 𝑁𝑁 − 1

DFT
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IDFT

𝑥𝑥(𝑛𝑛)
Time Domain

𝑋𝑋(𝑘𝑘)
Frequency Domain



Difference between DTFT and DFT

𝑋𝑋 𝑘𝑘
2𝜋𝜋𝑛𝑛𝑘𝑘

𝑁𝑁

𝑁𝑁−1

= 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗

𝑛𝑛=0

+∞

𝑋𝑋 𝜔𝜔 = 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗𝜔𝜔𝑛𝑛

𝑛𝑛=−∞

In DTFT frequency domain (𝜔𝜔) is 
continuous.
𝜔𝜔 changes from 0 to 2𝜋𝜋, but it is continuous.
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𝑁𝑁
In DFT frequency domain (𝜔𝜔 = 2𝜋𝜋𝑘𝑘) is
discrete.
𝜔𝜔 changes from 0 to 2𝜋𝜋 taking 0 to (N-1) 
number of samples.



−𝑗𝑗2𝜋𝜋𝑛𝑛𝑘𝑘
𝑁𝑁

𝑁𝑁−1

The N-Point DFT is defined as

The above expression also written as
𝑁𝑁𝑋𝑋 𝑘𝑘 = 𝑥𝑥(𝑛𝑛)𝑊𝑊𝑛𝑛𝑘𝑘

𝑋𝑋 𝑘𝑘 = 𝑥𝑥(𝑛𝑛)𝑒𝑒
𝑛𝑛=0
𝑁𝑁−1

𝑛𝑛=0

𝑁𝑁
𝑛𝑛𝑘𝑘𝑊𝑊 = 𝑒𝑒−𝑗𝑗 2𝜋𝜋𝑛𝑛𝑘𝑘

𝑁𝑁Where, Is called the twiddle factor

4𝑋𝑋 𝑘𝑘 = 𝑥𝑥(𝑛𝑛)𝑊𝑊𝑛𝑛𝑘𝑘

If N=4 we say it is 4-Point DFT. For N=4, the above expression can be written as

3

𝑛𝑛=0

𝑋𝑋 0 = 𝑥𝑥 0 𝑊𝑊0 + 𝑥𝑥(1)𝑊𝑊0 + 𝑥𝑥(2)𝑊𝑊0 + 𝑥𝑥(3)𝑊𝑊0
4 4 4 4

𝑋𝑋 1 = 𝑥𝑥 0 𝑊𝑊0 + 𝑥𝑥(1)𝑊𝑊1 + 𝑥𝑥(2)𝑊𝑊2 + 𝑥𝑥(3)𝑊𝑊3
4 4 4 4

𝑋𝑋 2 = 𝑥𝑥 0 𝑊𝑊0 + 𝑥𝑥(1)𝑊𝑊2 + 𝑥𝑥(2)𝑊𝑊4 + 𝑥𝑥(3)𝑊𝑊6
4 4 4 4

𝑋𝑋 3 = 𝑥𝑥 0 𝑊𝑊0 + 𝑥𝑥(1)𝑊𝑊3 + 𝑥𝑥(2)𝑊𝑊6 + 𝑥𝑥(3)𝑊𝑊9
4 4 4 4
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The DFT as a LinearTransformation



𝑋𝑋(0)
𝑋𝑋(1)
𝑋𝑋 2
𝑋𝑋(3)

=

4 4 4 4𝑊𝑊0 𝑊𝑊0 𝑊𝑊0 𝑊𝑊0

4𝑊𝑊0
4𝑊𝑊1

4𝑊𝑊2
4𝑊𝑊3

4 4 4 4𝑊𝑊0 𝑊𝑊2 𝑊𝑊4 𝑊𝑊6

4 4 4 4𝑊𝑊0 𝑊𝑊3 𝑊𝑊6 𝑊𝑊9

𝑥𝑥(0)
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥(3) 4𝑊𝑊0

𝑊𝑊1

4𝑊𝑊2

4𝑊𝑊3

𝑋𝑋(0)

𝑋𝑋 2
𝑋𝑋(3)

𝑋𝑋(1) =

1 1 1 1 𝑥𝑥(0)
1 −𝑗𝑗 −1 𝑗𝑗 𝑥𝑥(1)
1 −1 1 −1 𝑥𝑥(2)
1 𝑗𝑗 −1 −𝑗𝑗 𝑥𝑥(3)
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Note that for 4 point DFT, the computation of each point of DFT can be accomplished by 4 complex 

multiplication and (4-1) complex additions.

Total computation for 4-point DFT,Addition= (4-1)X3 and Multiplication= 4X4

Hence the N-point DFT values can be computed in a total of 𝑁𝑁2 multiplications and N(N-1) complex 

additions.

The DFT as a LinearTransformation (cont.)

𝑘𝑘+𝑁𝑁
𝑊𝑊𝑁𝑁

2 = −𝑊𝑊𝑁𝑁 ≫ 𝑊𝑊4 = −𝑊𝑊4
𝑘𝑘 𝑘𝑘+2 𝑘𝑘

4

Periodicity property ofW



𝑋𝑋 0
𝑋𝑋 1
𝑋𝑋 2
𝑋𝑋 3

.

.
𝑋𝑋(𝑁𝑁 − 1)

=

1 1
𝑁𝑁𝑊𝑊1

𝑁𝑁𝑊𝑊2
𝑁𝑁𝑊𝑊𝑁𝑁−1

𝑊𝑊2 𝑊𝑊4
𝑁𝑁𝑊𝑊2(𝑁𝑁−1)

.
𝑁𝑁
.
.

1 1
1
1
.
.
1 𝑁𝑁𝑊𝑊𝑁𝑁−1

𝑁𝑁
.
.

𝑊𝑊2(𝑁𝑁−1)

. .

. .

. .

. .

. .

. .𝑁𝑁 𝑁𝑁

.
𝑊𝑊(𝑁𝑁−1)(𝑁𝑁−1)

𝑥𝑥(0)
𝑥𝑥(1)
𝑥𝑥(2)

.

.
𝑥𝑥(𝑁𝑁 − 1)

The DFT as a LinearTransformation (cont.)

The N-point DFT may be expressed in matrix form as:

Where 𝑊𝑊𝑁𝑁 is the matrix of the linear transformation. If we assume that the inverse of 𝑊𝑊𝑁𝑁 exists, 
we obtain

The expression of inverse DTFT can be expressed as
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𝑊𝑊4 =

4 4 4 4𝑊𝑊0 𝑊𝑊0 𝑊𝑊0 𝑊𝑊0

4𝑊𝑊0
4𝑊𝑊1

4 4𝑊𝑊2 𝑊𝑊3

4𝑊𝑊0
4𝑊𝑊2

4𝑊𝑊4
4𝑊𝑊6

𝑊𝑊0
4 4 4 4𝑊𝑊3 𝑊𝑊6 𝑊𝑊9

=

1 1 1 1
1 −𝑗𝑗 −1 𝑗𝑗
1 −1 1 −1
1 𝑗𝑗 −1 −𝑗𝑗

𝑋𝑋(0) 1 1 1 1 0 0 + 1 + 2 + 3 6

206
Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV

𝑋𝑋(1)
𝑋𝑋 2 = 1

1
−𝑗𝑗
−1

−1
1

𝑗𝑗
−1

1
2 = 0 − 𝑗𝑗 − 2 + 3𝑗𝑗

0 − 1 + 2 − 3 = −2 + 2𝑗𝑗
−2

𝑋𝑋(3) 1 𝑗𝑗 −1 −𝑗𝑗 3 0 + 𝑗𝑗 − 2 − 3𝑗𝑗 −2 − 2𝑗𝑗

Now, Using the matrix expression 𝑋𝑋𝑁𝑁 = 𝑊𝑊𝑁𝑁𝑥𝑥𝑁𝑁, we can calculate DFT of the above sequence as

Example 7.1.3: Compute the DFT of the 4-point sequence
x(n)={0,1,2,3}

Solution:

The matrix of the linear transformation for 4-point DFT can be expressed as

Problem on DFT



Problem:The 4-point DFT of a discrete time sequence x(n) is given below. Determine
x(n).

X(k)={6,-2+2j,-2,-2-2j}

The matrix of the linear transformation for 4-point DFT can be expressed as

𝑊𝑊4 =

4 4 4 4𝑊𝑊0 𝑊𝑊0 𝑊𝑊0 𝑊𝑊0

4𝑊𝑊0
4𝑊𝑊1

4 4𝑊𝑊2 𝑊𝑊3

4 4 4 4𝑊𝑊0 𝑊𝑊2 𝑊𝑊4 𝑊𝑊6

𝑊𝑊0
4 4 4 4𝑊𝑊3 𝑊𝑊6 𝑊𝑊9

=

1 1 1 1
1 −𝑗𝑗 −1 𝑗𝑗
1 −1 1 −1
1 𝑗𝑗 −1 −𝑗𝑗

𝑥𝑥(0)

𝑥𝑥 2
𝑥𝑥(3)

𝑥𝑥(1) = 1 1 = 1
0
4

4 8
12

=

0
1
2
3

𝑁𝑁

1 1 1 1 6
𝑗𝑗 −1 −𝑗𝑗 −2 + 2𝑗𝑗

4 1 −1 1 −1 −2
1 −𝑗𝑗 −1 𝑗𝑗 −2 − 2𝑗𝑗

𝑁𝑁Now, Using the matrix expression 𝑥𝑥𝑁𝑁 = 1 𝑊𝑊∗𝑋𝑋𝑁𝑁, we can calculate IDFT of the above sequence as

Solution:

4So, 𝑊𝑊∗ =

1 1 1 1
1 𝑗𝑗 −1 −𝑗𝑗
1 −1 1 −1
1 −𝑗𝑗 −1 𝑗𝑗

Problem on IDFT

Problem: Compute the convolution of the sequences 𝒙𝒙𝟏𝟏 𝒏𝒏 = {𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟏𝟏} and
𝒙𝒙𝟐𝟐 𝒏𝒏 = {𝟒𝟒, 𝟑𝟑, 𝟐𝟐, 𝟐𝟐} using DFT and IDFT
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Multiplication ofTwo DFTs and Circular Convolution

Suppose that we have two finite-duration sequences of length N, 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛).Their respective

N-point DFTs are

If we multiply the two DFTs together, the result is a DFT say 𝑋𝑋3 𝑘𝑘 , of a sequence 𝑥𝑥3(𝑛𝑛) of length N. 

Let us determine the relationship between 𝑥𝑥3(𝑛𝑛) and the sequences 𝑥𝑥1(𝑛𝑛) and 𝑥𝑥2(𝑛𝑛).

The IDFT of 𝑋𝑋3 𝑘𝑘 is:
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Where,

Putting the value 𝑋𝑋1(𝑘𝑘) and 𝑋𝑋2(𝑘𝑘)

We can write
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if (m-n-l) is a multiple of N, i.e.
𝑚𝑚 − 𝑛𝑛 − 𝑙𝑙 = 𝑝𝑝𝑁𝑁, 𝑝𝑝 𝑖𝑖𝑠𝑠 𝑎𝑎𝑛𝑛 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑔𝑔𝑒𝑒𝑟𝑟

a becomes 𝑎𝑎 = 𝑒𝑒𝑗𝑗2𝜋𝜋𝑝𝑝 = 1

Multiplication ofTwo DFTs and Circular Convolution (Cont.)



𝑎𝑎𝑁𝑁 = 1, for any value 𝑎𝑎 ≠ 0

𝑎𝑎𝑁𝑁 = 𝑒𝑒𝑗𝑗2𝜋𝜋(𝑚𝑚−𝑛𝑛−𝑙𝑙) = cos 2𝜋𝜋 𝑚𝑚 − 𝑛𝑛 − 𝑙𝑙 + 𝑗𝑗𝑠𝑠𝑖𝑖𝑛𝑛 2𝜋𝜋 𝑚𝑚 − 𝑛𝑛 − 𝑙𝑙 = 1

The above expression has the form of a convolution sum. However it is not the ordinary linear

convolution which relates the output sequence y(n) of a linear system to the input sequence x(n) and

impulse response h(n). The above expression involves the index (𝒎𝒎 − 𝒏𝒏)𝑵𝑵 and is called

circular convolution. Multiplication of DFTs of two sequences is equivalent to the

circular convolution of the two sequences in the time domain.
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Multiplication ofTwo DFTs and Circular Convolution (Cont.)

Finally we can write,



Problem: Compute the circular convolution of following two sequences

We can represent the sequences in graph where the samples are placed in counterclockwise direction 
in a circle

Problem on Circular Convolution

211
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Solution:



𝐱𝐱𝟑𝟑 𝟎𝟎
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= 𝟐𝟐 + 𝟒𝟒 + 𝟔𝟔 + 𝟐𝟐 = 𝟏𝟏𝟒𝟒

Problem on Circular Convolution (Cont.)



𝐱𝐱𝟑𝟑 𝟏𝟏 = 𝟒𝟒 + 𝟏𝟏 + 𝟖𝟖 + 𝟑𝟑 = 𝟏𝟏𝟔𝟔

𝐱𝐱𝟑𝟑 𝟐𝟐
213
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= 𝟔𝟔 + 𝟐𝟐 + 𝟐𝟐 + 𝟒𝟒 = 𝟏𝟏𝟒𝟒

Problem on Circular Convolution (Cont.)



𝐱𝐱𝟑𝟑 𝟑𝟑
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= 𝟖𝟖 + 𝟑𝟑 + 𝟒𝟒 + 𝟏𝟏 = 𝟏𝟏𝟔𝟔

𝑥𝑥3(𝑛𝑛) = {14,16, 14,16}
↑

Problem on Circular Convolution (Cont.)



𝑥𝑥3(0) 2 1 2 1 1 2 + 2 + 6 + 4 14
𝑥𝑥3(1)
𝑥𝑥3(2) = 1

2
2
1

1
2

2
1

2
3 = 1 + 4 + 3 + 8

2 + 2 + 6 + 4 = 16
14

𝑥𝑥3(3) 1 2 1 2 4 1 + 4 + 3 + 8 16

𝑥𝑥3(𝑛𝑛) = {14,16, 14,16}
↑

Problem: Compute the circular convolution of following two sequences

Alternative method of computing Circular Convolution
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Solution:



Zero padding

Zero padding is a simple concept, it simply refers to adding zeros to end of a time domain signals to 

increase its length.



Computation of linear convolution by circular convolution

𝑦𝑦 −1
𝑦𝑦 0
𝑦𝑦 1
𝑦𝑦 2
𝑦𝑦(3)
𝑦𝑦(4)
𝑦𝑦(5)

1 0 0 0 1 3 2 1
2 1 0 0 0 1 3 2
3 2 1 0 0 0 1 1

= 1 3 2 1 0 0 0 −1 =
0 1 3 2 1 0 0 0
0 0 1 3 2 1 0 0
0 0 0 1 3 2 1 0

1
4
8
8
3

−2
−1

After zero padding: 𝑥𝑥 (𝑛𝑛) = {1,2, 3,1,0,0,0}
↑

ℎ (𝑛𝑛) = {1,2, 1, −1,0,0,0}
↑

Compute the linear convolution of the following two sequences by circular 
convolution

Solution:

Length of convolution sequence = 4+41=7

Start of sequence= min (min(x(n)) min(h(n))) =-1
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Week 13
Slide 213-224



Fast FourierTransform (FFT)
A Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete Fourier Transform

(DFT) and inverse of DFT. FFT requires a smaller number of arithmetic operations such as

multiplications and addition than DFT (i.e. FFT requires lesser computation time than DFT).

No of computations in direct DFT Computations in FFT

Multiplications: 𝑁𝑁2

Additions: N(N-1)
Multiplications: 𝑁𝑁 𝑙𝑙𝑜𝑜𝑔𝑔2(𝑁𝑁)

2

Additions: 𝑁𝑁 𝑙𝑙𝑜𝑜𝑔𝑔2(𝑁𝑁)

For, 𝑁𝑁 = 106

Total mathematical operations required to find DFT 

Direct DFT: 1012 + 106 106 − 1 ≈ 2 × 1012

FFT: (5 × 105 × 𝑙𝑙𝑜𝑜𝑔𝑔2(106) + 106 × 𝑙𝑙𝑜𝑜𝑔𝑔2(106) ≅ 24 × 106

If each mathematical operation needs 1 ns to compute by digital computer,

Direct DFT needs 2 × 1012𝑛𝑛𝑠𝑠 = 2 × 103𝑠𝑠 = 2000𝑠𝑠

Whether FFT algorithm needs 24 × 106ns = 24 × 10−3𝑠𝑠 = 0.024 𝑠𝑠
220
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Fast FourierTransform (FFT) Algorithm

 Direct computation of the DFT is less efficient because it does not exploit the properties of
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𝑁𝑁symmetry and periodicity of the phase factor 𝑊𝑊𝑛𝑛𝑘𝑘

 FFT algorithms exploit the above properties of phase factor to reduce the number of

mathematical calculations to compute DFT. There are many FFT algorithm which involves a

wide range of mathematics.

 On the basis of decimation (decimation means decomposition into decimal parts) process
FFT

algorithms are two types.

 Decimation-in-Time FFT algorithm: The sequence x(n) will be broken up into odd

numbered and even numbered subsequences.This algorithm was first proposed by Cooley and

Tukey in 1965.



𝑋𝑋 𝑘𝑘 −𝑗𝑗2𝜋𝜋𝑛𝑛𝑘𝑘
𝑁𝑁 , 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1

= 𝑥𝑥𝑛𝑛𝑊𝑊𝑛𝑛𝑘𝑘
𝑁𝑁

= 𝑥𝑥𝑛𝑛𝑒𝑒
𝑛𝑛=0

𝑁𝑁−1

𝑛𝑛=0

Where, 𝑊𝑊 = 𝑒𝑒−𝑗𝑗 2𝜋𝜋
𝑁𝑁

𝑵𝑵

𝑵𝑵−𝟏𝟏

𝑵𝑵= 𝒙𝒙𝟐𝟐𝒏𝒏𝑾𝑾𝟐𝟐𝒏𝒏𝒌𝒌 + 𝒙𝒙𝟐𝟐𝒏𝒏+𝟏𝟏𝑾𝑾(𝟐𝟐𝒏𝒏+𝟏𝟏)𝒌𝒌
𝟐𝟐 𝟐𝟐

𝑵𝑵−𝟏𝟏

𝒏𝒏=𝟎𝟎 𝒏𝒏=𝟎𝟎

𝑁𝑁

Even sequence
𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥6

2 −1

Odd sequence
𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥5, 𝑥𝑥7

𝑁𝑁
2 −1

= 𝑥𝑥2𝑛𝑛𝑊𝑊2𝑛𝑛𝑘𝑘 +𝑊𝑊𝑘𝑘 𝑥𝑥2𝑛𝑛+1𝑊𝑊𝑛𝑛𝑘𝑘
𝑁𝑁/2 𝑁𝑁 𝑁𝑁/2

𝑛𝑛=0 𝑛𝑛=0
𝑁𝑁= 𝑋𝑋𝑒𝑒 𝑘𝑘 + 𝑊𝑊𝑘𝑘𝑋𝑋𝑜𝑜 𝑘𝑘 , 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1

Some relationship involving 𝑾𝑾𝑵𝑵

𝑵𝑵
𝟐𝟐𝑾𝑾 = (𝒆𝒆−𝒋𝒋𝟐𝟐𝝅𝝅

𝑵𝑵 𝟐𝟐) = 𝒆𝒆−𝒋𝒋 𝟐𝟐𝝅𝝅
𝑵𝑵/𝟐𝟐 = 𝑾𝑾𝑵𝑵/𝟐𝟐

Symmetry: 𝑾𝑾𝑵𝑵
𝟐𝟐(𝒌𝒌+𝑵𝑵) 𝒌𝒌= 𝑾𝑾𝑵𝑵 𝑾𝑾𝑵𝑵

𝑵𝑵/𝟐𝟐

𝑵𝑵 𝑵𝑵= 𝑾𝑾𝒌𝒌 𝒆𝒆−𝒋𝒋𝝅𝝅 = −𝑾𝑾𝒌𝒌

𝑵𝑵 𝑵𝑵Periodicity: 𝑾𝑾(𝒌𝒌+𝑵𝑵) = −𝑾𝑾𝒌𝒌

The decimation in time FFT Algorithm

X(k)

Xe(k)

Xee(k)

Xeo(k)

Xo(k)

Xoe(k)

Xoo(k)
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Cooley-Tukey Algorithm

𝑁𝑁−1



𝑋𝑋𝑒𝑒 𝑒𝑒𝑒𝑒 𝑁𝑁 𝑒𝑒𝑜𝑜
2 2𝑘𝑘 = 𝑋𝑋 𝑘𝑘 + 𝑊𝑊𝑘𝑘 𝑋𝑋 𝑘𝑘 , 𝑘𝑘 = 0 𝑡𝑡𝑜𝑜 𝑁𝑁 − 1

𝑁𝑁
2

𝑋𝑋𝑜𝑜 𝑘𝑘 = 𝑋𝑋𝑜𝑜𝑒𝑒 𝑘𝑘 + 𝑊𝑊𝑘𝑘 𝑋𝑋𝑜𝑜𝑜𝑜 𝑘𝑘 ,
2

𝑘𝑘 = 0 𝑡𝑡𝑜𝑜 𝑁𝑁 − 1

Even sequence
𝑥𝑥0, 𝑥𝑥4

Odd sequence
𝑥𝑥2, 𝑥𝑥6

Even sequence
𝑥𝑥1, 𝑥𝑥5

Odd sequence
𝑥𝑥3, 𝑥𝑥7

𝑋𝑋𝑒𝑒𝑒𝑒 𝑘𝑘 𝑘𝑘= 𝑥𝑥𝑜𝑜 + 𝑊𝑊𝑁𝑁 𝑥𝑥4
4

𝑒𝑒𝑜𝑜 2𝑋𝑋 𝑘𝑘 = 𝑥𝑥 + 𝑊𝑊𝑘𝑘 𝑥𝑥𝑁𝑁 6
4

𝑋𝑋𝑒𝑒𝑒𝑒 0

𝑋𝑋𝑒𝑒𝑒𝑒 1

= 𝑥𝑥𝑜𝑜 + 𝑥𝑥4

= 𝑥𝑥𝑜𝑜 − 𝑥𝑥4

𝑁𝑁
4

1
2
1𝑊𝑊 = 𝑊𝑊 = 𝑒𝑒

2𝜋𝜋
2−𝑗𝑗 .1

= −1

𝑋𝑋𝑒𝑒𝑜𝑜 0

𝑋𝑋𝑒𝑒𝑜𝑜 1

= 𝑥𝑥2 + 𝑥𝑥6

= 𝑥𝑥2 − 𝑥𝑥6

𝑋𝑋𝑜𝑜𝑒𝑒 0

𝑋𝑋𝑜𝑜𝑒𝑒 1

= 𝑥𝑥1 + 𝑥𝑥5

= 𝑥𝑥1 − 𝑥𝑥5

𝑋𝑋𝑜𝑜𝑜𝑜 0

𝑋𝑋𝑜𝑜𝑜𝑜 1

= 𝑥𝑥3 + 𝑥𝑥7

= 𝑥𝑥3 − 𝑥𝑥7

The decimation in time FFT Algorithm (Cont.)
St

ag
e-

1
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𝑒𝑒𝑋𝑋 𝑘𝑘 𝑒𝑒𝑒𝑒 𝑁𝑁 𝑒𝑒𝑜𝑜
2 2

= 𝑋𝑋 𝑘𝑘 + 𝑊𝑊𝑘𝑘 𝑋𝑋 𝑘𝑘 , 𝑘𝑘 = 0 𝑡𝑡𝑜𝑜 𝑁𝑁 − 1

8/2𝑋𝑋𝑒𝑒 0 = 𝑋𝑋𝑒𝑒𝑒𝑒 0 + 𝑊𝑊0
8𝑋𝑋𝑒𝑒𝑜𝑜 0 = 𝑋𝑋𝑒𝑒𝑒𝑒 0 + 𝑊𝑊0 𝑋𝑋𝑒𝑒𝑜𝑜 0

𝑋𝑋𝑒𝑒 1 𝑒𝑒𝑒𝑒= 𝑋𝑋 1 + 𝑊𝑊1 𝑋𝑋8 𝑒𝑒𝑜𝑜
2

1 = 𝑋𝑋𝑒𝑒𝑒𝑒 1 + 𝑊𝑊2 𝑋𝑋 1
8 𝑒𝑒𝑜𝑜

𝑒𝑒 𝑒𝑒𝑒𝑒 8
2

𝑒𝑒𝑜𝑜
𝑋𝑋 2 = 𝑋𝑋 2 + 𝑊𝑊2 𝑋𝑋 2 = 𝑋𝑋𝑒𝑒𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋 0

8 𝑒𝑒𝑜𝑜

𝑁𝑁𝑋𝑋𝑒𝑒𝑒𝑒 2 = 𝑥𝑥𝑜𝑜 + 𝑊𝑊2 𝑥𝑥4
4

= 𝑥𝑥𝑜𝑜 + 𝑊𝑊2 𝑥𝑥4 = 𝑥𝑥𝑜𝑜 + 𝑥𝑥4

𝑋𝑋𝑒𝑒𝑜𝑜 2

2
= 𝑋𝑋𝑒𝑒𝑒𝑒 0

= 𝑋𝑋𝑒𝑒𝑜𝑜 0

8
2

2𝜋𝜋4
𝑊𝑊2= 𝑒𝑒−𝑗𝑗 8 = −1

2(k+N)
𝑵𝑵WN = −𝑾𝑾𝒌𝒌𝑒𝑒 𝑒𝑒𝑒𝑒 8 𝑒𝑒𝑜𝑜

2

𝑋𝑋 3 = 𝑋𝑋 3 + 𝑊𝑊3 𝑋𝑋 3 = 𝑋𝑋𝑒𝑒𝑒𝑒 1 − 𝑊𝑊2𝑋𝑋 1
8 𝑒𝑒𝑜𝑜

8/2𝑋𝑋𝑜𝑜 0 = 𝑋𝑋𝑜𝑜𝑒𝑒 0 + 𝑊𝑊0
8𝑋𝑋𝑜𝑜𝑜𝑜 0 = 𝑋𝑋𝑜𝑜𝑒𝑒 0 + 𝑊𝑊0 𝑋𝑋𝑜𝑜𝑜𝑜 0

𝑜𝑜𝑒𝑒 8
2

𝑋𝑋𝑜𝑜 1 = 𝑋𝑋 1 + 𝑊𝑊1 𝑋𝑋𝑜𝑜𝑜𝑜

𝑜𝑜 𝑜𝑜𝑒𝑒 8
2

𝑋𝑋 2 = 𝑋𝑋 2 + 𝑊𝑊2 𝑋𝑋𝑜𝑜𝑜𝑜

1 = 𝑋𝑋𝑜𝑜𝑒𝑒 1 + 𝑊𝑊2 𝑋𝑋 1
8 𝑜𝑜𝑜𝑜

2 = 𝑋𝑋𝑜𝑜𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋 0
8 𝑜𝑜𝑜𝑜

𝑜𝑜 𝑜𝑜𝑒𝑒 8
2

𝑋𝑋 3 = 𝑋𝑋 3 + 𝑊𝑊3 𝑋𝑋𝑜𝑜𝑜𝑜
3 = 𝑋𝑋𝑜𝑜𝑒𝑒 1 − 𝑊𝑊2𝑋𝑋 1

8 𝑜𝑜𝑜𝑜

Similarly,

The decimation in time FFT Algorithm (Cont.)
St

ag
e-
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𝑁𝑁𝑋𝑋 𝑘𝑘 = 𝑋𝑋𝑒𝑒 𝑘𝑘 + 𝑊𝑊𝑘𝑘𝑋𝑋𝑜𝑜 𝑘𝑘 ,

8

8= 𝑋𝑋𝑒𝑒 1 + 𝑊𝑊1𝑋𝑋𝑜𝑜 1

𝑋𝑋 0 = 𝑋𝑋𝑒𝑒 0 + 𝑊𝑊0𝑋𝑋𝑜𝑜 0

𝑋𝑋 1

𝑋𝑋 2 8= 𝑋𝑋𝑒𝑒 2 + 𝑊𝑊2𝑋𝑋𝑜𝑜 2

8𝑋𝑋 3 = 𝑋𝑋𝑒𝑒 3 + 𝑊𝑊3𝑋𝑋𝑜𝑜 3

8 8

8𝑋𝑋𝑒𝑒 4 = 𝑋𝑋𝑒𝑒𝑒𝑒 4 + 𝑊𝑊4 𝑋𝑋𝑒𝑒𝑜𝑜 4
2

= 𝑋𝑋𝑒𝑒𝑒𝑒 0 + 𝑋𝑋𝑒𝑒𝑜𝑜 0
= 𝑋𝑋𝑒𝑒 0

Similarly, 𝑋𝑋𝑜𝑜 4 = 𝑋𝑋0 0
(0+8)

W8 = −𝑾𝑾𝟖𝟖
2 𝟎𝟎

𝑋𝑋𝑒𝑒𝑒𝑒 4 = 𝑥𝑥𝑜𝑜 + 𝑊𝑊4 𝑥𝑥42

= 𝑥𝑥𝑜𝑜 + 𝑥𝑥4=𝑋𝑋𝑒𝑒𝑒𝑒 0

Similarly, 𝑋𝑋𝑒𝑒𝑜𝑜=𝑋𝑋𝑒𝑒𝑜𝑜 0

8 8= 𝑋𝑋𝑒𝑒 5 + 𝑊𝑊5𝑋𝑋𝑜𝑜 5 = 𝑋𝑋𝑒𝑒 1 − 𝑊𝑊1𝑋𝑋𝑜𝑜 1
6 2= 𝑋𝑋𝑒𝑒 6 + 𝑊𝑊8 𝑋𝑋𝑜𝑜 6 = 𝑋𝑋𝑒𝑒 2 − 𝑊𝑊8 𝑋𝑋𝑜𝑜 2

𝑋𝑋 4 = 𝑋𝑋𝑒𝑒 4 + 𝑊𝑊4𝑋𝑋𝑜𝑜 4 = 𝑋𝑋𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋𝑜𝑜 0

𝑋𝑋 5

𝑋𝑋 6

𝑋𝑋 7 8 8= 𝑋𝑋𝑒𝑒 7 + 𝑊𝑊7𝑋𝑋𝑜𝑜 7 = 𝑋𝑋𝑒𝑒 3 − 𝑊𝑊3𝑋𝑋𝑜𝑜 3

The decimation in time FFT Algorithm (Cont.)
St

ag
e-

3

225
Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



𝒙𝒙𝒐𝒐

𝒙𝒙𝟒𝟒
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𝒙𝒙𝟐𝟐

𝒙𝒙𝟔𝟔

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

𝒙𝒙𝟑𝟑

𝒙𝒙𝟕𝟕

𝑿𝑿𝒆𝒆𝒆𝒆(𝟎𝟎)

𝑿𝑿𝒆𝒆𝒆𝒆(𝟏𝟏)

𝑿𝑿𝒆𝒆𝒐𝒐(𝟎𝟎)

𝑿𝑿𝒐𝒐𝒆𝒆(𝟎𝟎)

𝑿𝑿𝒐𝒐𝒆𝒆(𝟏𝟏)

𝑿𝑿𝒐𝒐𝒐𝒐(𝟎𝟎)

𝑿𝑿𝒆𝒆(𝟎𝟎)

𝑿𝑿𝒆𝒆(𝟏𝟏)

𝑿𝑿𝒆𝒆(𝟐𝟐)

𝑿𝑿𝒆𝒆(𝟑𝟑)

𝑿𝑿𝒐𝒐(𝟎𝟎)

𝑿𝑿𝒐𝒐(𝟏𝟏)

8
𝑿𝑿𝒆𝒆𝒐𝒐(𝟏𝟏)

𝑊𝑊0

8𝑊𝑊2

8
𝑿𝑿𝒐𝒐𝒐𝒐(𝟏𝟏)

𝑊𝑊0

8𝑊𝑊2

8𝑊𝑊0

8
𝑿𝑿𝒐𝒐(𝟐𝟐)

𝑊𝑊1

8
𝑿𝑿𝒐𝒐(𝟑𝟑)

𝑊𝑊2

8𝑊𝑊3

The decimation in time FFT Algorithm (Cont.)

8-point decimation in time FFT Algorithm



complex numbers, say the pair (a,b), multiply b by 𝑊𝑊𝑟𝑟,
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𝑁𝑁

and then add and subtract the product from a to form

two new complex numbers (A,B). This basic

computation is called a butterfly because the flow

graph resembles a butterfly.

In general, each butterfly involves one complex multiplication and two complex additions. For N 

point FFT, there are N/2 butterflies per stage of the computation process and 𝑙𝑙𝑜𝑜𝑔𝑔2(𝑁𝑁) stages.

Therefore,

2
Total number of complex multiplications is 𝑁𝑁 𝑙𝑙𝑜𝑜𝑔𝑔2(𝑁𝑁)

And complex addition is 𝑁𝑁 𝑙𝑙𝑜𝑜𝑔𝑔2(𝑁𝑁)

The decimation in time FFT Algorithm (Cont.)

Reduction of computational complexity

The basic computation performed at every stage 

(previous fig: 8-point DIT FFT algorithm) is to take two

Fig: Basic butterfly computation in 
the decimation-in-time FFT 
algorithm



Comparison of Computational Complexity for the Direct Computation of the DFT 
Versus the FFT Algorithm

The decimation in time FFT Algorithm (Cont.)
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Even 
Part

𝑥𝑥0 𝑥𝑥4 𝑥𝑥2 𝑥𝑥6

1 0 1 0

Odd 
Part

𝑥𝑥1 𝑥𝑥5 𝑥𝑥3 𝑥𝑥7

1 0 0 0

𝑋𝑋𝑜𝑜𝑜𝑜 1

= 𝑥𝑥𝑜𝑜 + 𝑥𝑥4=1

= 𝑥𝑥𝑜𝑜 − 𝑥𝑥4 = 1

= 𝑥𝑥2 + 𝑥𝑥6 = 1

= 𝑥𝑥2 − 𝑥𝑥6 = 1

= 𝑥𝑥1 + 𝑥𝑥5 = 1

= 𝑥𝑥1 − 𝑥𝑥5 = 1

= 𝑥𝑥3 + 𝑥𝑥7 = 0
= 𝑥𝑥3 − 𝑥𝑥7 = 0

Stage-1: 𝑋𝑋𝑒𝑒𝑒𝑒 0

𝑋𝑋𝑒𝑒𝑒𝑒 1

𝑋𝑋𝑒𝑒𝑜𝑜 0

𝑋𝑋𝑒𝑒𝑜𝑜 1

𝑋𝑋𝑜𝑜𝑒𝑒 0

𝑋𝑋𝑜𝑜𝑒𝑒 1

𝑋𝑋𝑜𝑜𝑜𝑜 0

Problem: For the discrete time sequence x(n)={1,1,1,0,0,0,0,0}, find the 8-point 
DFT using DIT-FFT algorithm.

Solution:

Problem on FFT
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Stage-2 2 𝑒𝑒−𝑗𝑗𝜋𝜋
2

𝑋𝑋𝑒𝑒 0 = 𝑋𝑋𝑒𝑒𝑒𝑒 0 + 𝑊𝑊0 𝑋𝑋𝑒𝑒𝑜𝑜 0 = 2

𝑋𝑋𝑒𝑒 1 = 𝑋𝑋𝑒𝑒𝑒𝑒 1 + 𝑊𝑊2 𝑋𝑋𝑒𝑒𝑜𝑜 1 = 1 − 𝑗𝑗

𝑋𝑋𝑒𝑒 2 = 𝑋𝑋𝑒𝑒𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋𝑒𝑒𝑜𝑜 0 = 0

𝑋𝑋𝑒𝑒 3 = 𝑋𝑋𝑒𝑒𝑒𝑒 1 − 𝑊𝑊2𝑋𝑋𝑒𝑒𝑜𝑜 1 = 1 + 𝑗𝑗

𝑋𝑋𝑜𝑜 0 = 𝑋𝑋𝑜𝑜𝑒𝑒 0 + 𝑊𝑊0 𝑋𝑋𝑜𝑜𝑜𝑜 0 = 1

𝑋𝑋𝑜𝑜 1 = 𝑋𝑋𝑜𝑜𝑒𝑒 1 + 𝑊𝑊2 𝑋𝑋𝑜𝑜𝑜𝑜 1 = 1

𝑋𝑋𝑜𝑜 2 = 𝑋𝑋𝑜𝑜𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋𝑜𝑜𝑜𝑜 0 = 1

𝑋𝑋𝑜𝑜 3 = 𝑋𝑋𝑜𝑜𝑒𝑒 1 − 𝑊𝑊2𝑋𝑋𝑜𝑜𝑜𝑜 1 = 1

= −𝑗𝑗

Problem on FFT (Cont.)



8𝑋𝑋 0 = 𝑋𝑋𝑒𝑒 0 + 𝑊𝑊0𝑋𝑋𝑜𝑜 0 =3

𝑋𝑋 1 = 𝑋𝑋𝑒𝑒 1 + 𝑊𝑊1𝑋𝑋 1
8 𝑜𝑜 = 1 − j + ( 1 − 𝑗𝑗 1 )

2 2

8𝑋𝑋 2 = 𝑋𝑋𝑒𝑒 2 + 𝑊𝑊2𝑋𝑋𝑜𝑜 2 = −𝑗𝑗

𝑋𝑋 3 = 𝑋𝑋𝑒𝑒 3 + 𝑊𝑊3𝑋𝑋 3
8 𝑜𝑜 = 1 + 𝑗𝑗 + (− 1 − 𝑗𝑗 1 )

2 2

8𝑋𝑋 4 = 𝑋𝑋𝑒𝑒 0 − 𝑊𝑊0𝑋𝑋𝑜𝑜 0 = 2 − 1 = 1

𝑋𝑋 5 = 𝑋𝑋𝑒𝑒 1 − 𝑊𝑊1𝑋𝑋 1
8 𝑜𝑜 = 1 − 𝑗𝑗 − ( 1 − 𝑗𝑗 1 )

2 2

8𝑋𝑋 6 = 𝑋𝑋𝑒𝑒 2 − 𝑊𝑊2𝑋𝑋𝑜𝑜 2 = 𝑗𝑗

𝑋𝑋 7 = 𝑋𝑋𝑒𝑒 3 − 𝑊𝑊3𝑋𝑋 3
8 𝑜𝑜 = 1 + 𝑗𝑗 − (− 1 − 𝑗𝑗 1 )

2 2

8

Stage-3
1𝑊𝑊 = 𝑒𝑒−𝑗𝑗𝜋𝜋

4 = 1 − 𝑗𝑗 1
√2 √2 8

3𝑊𝑊 = 𝑒𝑒−𝑗𝑗3𝜋𝜋
4 = − 1 − 𝑗𝑗 1

√2 √2

Problem on FFT (Cont.)
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 Function of digital Filter

 Comparison of Analog and Digital Filter

 Filter kernel

 Types of filter

 Time domain and frequency domain parameters of filter.

 Design of all frequency selective filter from low pass filter kernel.

Reference Book:
The Scientist and Engineer's Guide to Digital Signal Processing, By Steven
W. Smith (2nd Edition)

Chapter-14 (Introduction to Digital Filters)
Digital Signal Processing: A practical approach, By Emmanuel C Ifeachor,
BarrieW Jervis

Chapter-5 (A framework for digital filter design)
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Functions of Digital Filter
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 Filters have two uses: signal separation and signal restoration.

 Signal separation is needed when a signal has been contaminated with interference, noise,

or other signals. For example, imagine a device for measuring the electrical activity of a

baby's heart (EKG) while still in the womb. The raw signal will likely be corrupted by the

breathing and heartbeat of the mother. A filter might be used to separate these signals so that

they can be individually analyzed.

 Signal restoration is used when a signal has been distorted in some way. For example, an

audio recording made with poor equipment may be filtered to better represent the sound as

it actually occurred. Another example is the deblurring of an image acquired with an

improperly focused lens, or a shaky camera.



 Digital filters can have characteristics which are not possible with analogue filters, such as a

truly linear phase response.

 Unlike analogue filters, the performance of digital filters does not vary with environment

changes, for example thermal variations.This eliminates the need to calibrate periodically.

 The frequency response of digital filter can be automatically adjusted if it is implemented

using a programmable processor, that is why they are widely used in adaptive filters.

 Several input signals or channels can be filtered by one digital filter without the need to

replicate the hardware.

 Both filtered and unfiltered data can be saved for further use.

 Advantage can be readily taken of the tremendous advantages in VLSI technology to fabricate

digital filters and to make them small in size, to consume low power, and to keep the cost

down.
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Comparison of Analog and Digital Filter 

Advantages



 In practice, the precision achieved with analog filters is restricted; for example, typically a

maximum of only about 60 to 70 dB stop band attenuation is possible with active filters designed

with off-the-shelf components. With digital filters the precision is limited only by the word

length used.

 Digital filters, in comparison, are vastly superior in the sharp frequency response that can be

achieved. For example, a low-pass digital filter has a gain of 1 +/- 0.0002 from DC to 1000

hertz, and a gain of less than 0.0002 for frequencies above 1001 hertz. The entire transition

occurs within only 1 hertz. But we can’t except this from an analog filter, due to limitations of

the electronics, such as the accuracy and stability of the resistors and capacitors. Digital filters

can achieve thousands of times better performance than analog filters.

 Digital filter can be used at very low frequencies, found in many biomedical applications for

example, where the use of analog filters are impractical. Also, digital filters can be made to work

over a wide range of frequencies by a mere change to the sampling frequency.
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Comparison of Analog and Digital Filter



Comparison of Analog and Digital Filter 
Disadvantages
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Speed Limitation: The maximum bandwidth of signals that digital filters can handle, in real time, is

much lower than analogue filters. In real time situations, the analog-digital-analog conversion

processes introduce a speed constraint on the digital filter performance. The conversion time of the

ADC and the settling time of the DAC limit the highest frequency that can be processed. Further, the

speed of operation of a digital filter depends on the speed of digital processor used and on the number

of arithmetic operations that must be performed for the filtering algorithm, which increases as the

filter response is made tighter.

Finite word length effects: Digital filters are subject to ADC noise resulting from quantizing a

continuous signal, and to roundoff noise incurred during computation. With higher order recursive

filters, the accumulation of roundoff noise could lead to instability.

Long Design and Development Times: The design and development times for digital filters,

especially hardware development, can be much longer than analog filters.



Filter Response and Filter Kernel

 Every linear filter has an impulse response, a step response and a frequency response. Each

of these responses contains complete information about the filter, but in a different form. If

one of the three is specified, the other two are fixed and can be directly calculated. All three

of these representations are important, because they describe how the filter will react under

different circumstances.

 The most straightforward way to implement a digital filter is by convolving the input signal

with the digital filter's impulse response. All possible linear filters can be made in this

manner. When the impulse response is used in this way, filter designers give it a special

name: the filter kernel.
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The step response, (b), can be found by discrete integration of the impulse response, (a). The
frequency response can be found from the impulse response by using the Fast Fourier Transform
(FFT), and can be displayed either on a linear scale, (c), or in decibels, (d).

240
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en below

Digital filters are broadly divided into two classes, namely infinite impulse response (IIR) and

finite impulse response (FIR) filters. Either type of filter in its basic form, can be represented by

its impulse response sequence h(k). The input and output signals to the filter are related by the

convolution sum, which are giv
IIR:

FIR:

It is evident from these equations that, for IIR filters, the impulse response is of infinite duration

whereas for FIR it is of finite duration, since h(k) for the FIR has only N values. In practice it is not

feasible to compute the output of the IIR filter using above equation because the length of its impulse

response is too long (infinite in theory). Instead the IIR filtering equation is expressed in a recursive

form (that’s why IIIR filter is also called recursive filter):
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Types of Filter



Time Domain Parameters of Filter
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The step response is used to measure how well a filter performs in the time domain.Three parameters

are important: (1) transition speed (risetime), shown in (a) and (b),

(2) overshoot, shown in (c) and (d), and

(3) phase linearity (symmetry between the top and bottom halves of the step), shown in (e) and (f).



Time Domain Parameters of Filter (Cont.)
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Figure shows the four basic frequency responses. The purpose of these filters is to allow some

frequencies to pass unaltered, while completely blocking other frequencies.

Pass band and Stop Band: The passband refers to those frequencies that are passed, while the

stopband contains those frequencies that are blocked. The transition band is between. A fast roll-off

means that the transition band is very narrow.

Cutoff Frequency: The division between

the passband and transition band is called the

cutoff frequency. In analog filter design, the

cutoff frequency is usually defined to be

where the amplitude is reduced to 0.707

(i.e., -3dB). Digital filters are less

standardized, and it is common to see 99%,

90%, 70.7%, and 50% amplitude levels

defined to be the cutoff frequency.

Frequency Domain Parameters of Filter
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Frequency Domain Parameters of Filter (Cont.)
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Parameters for evaluating frequency domain performance.The frequency responses shown are for low-

pass filters.Three parameters are important:

(1) roll-off sharpness, shown in (a) and (b),

(2) passband ripple, shown in (c) and (d), and

(3) stopband attenuation, shown in (e) and (f).



Frequency Domain Parameters of Filter (Cont.)
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Other filter kernel from low pass filter kernel
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High-pass, band-pass and band-reject filters are designed by starting with a low-pass filter, and then

converting it into the desired response. For this reason, most discussions on filter design only give

examples of low-pass filters.

There are two methods for the low-pass to high-pass conversion:

a) spectral inversion and b) spectral reversal.

Both are equally useful.

Bandpass and bandstop filters can be obtained from lowapass and highpass filter.

Lo
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Low pass to high pass conversion: spectral inversion

In (a), the input signal, x[n] , is applied to two systems in parallel. One of these systems is a low-pass

filter, with an impulse response given by h[n] . The other system does nothing to the signal (pass all

frequency), and therefore has an impulse response that is a delta function, 𝛿𝛿[n] . The overall output,

y[n] , is equal to the output of the all-pass system minus the output of the low-pass system. Since the

low frequency components are subtracted from the original signal, only the high frequency

components appear in the output.Thus, a high-pass filter is formed.
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From the discussion of previous slide we can say-

Two things must be done to change the low-pass filter kernel into a high-pass filter kernel.

First, change the sign of each sample in the filter kernel.

Second, add one to the sample at the center of symmetry.

This results in the high-pass filter kernel shown in (c), with the frequency response shown in (d) [see

the fig in next slide].

Spectral inversion flips the frequency response top-for-bottom, changing the passbands into stopbands,

and the stopbands into passbands. In other words, it changes a filter from low-pass to high-pass, high-

pass to low-pass, band-pass to band-reject, or band-reject to band-pass.

For this technique to work, the low-frequency components exiting the low-pass filter must have the

same phase as the low-frequency components exiting the all-pass system. This places two restrictions

on the method: (1) the original filter kernel must have left-right symmetry (i.e., a zero or linear

phase), and (2) the impulse must be added at the center of symmetry.

Low pass to high pass conversion: spectral inversion (cont.)

𝜹𝜹 𝒏𝒏 − 𝒉𝒉 𝒏𝒏
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Low pass to high pass conversion: spectral inversion (Cont.)
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Low pass to high pass conversion: spectral reversal
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The second method for low-pass to high-pass conversion, spectral reversal, is illustrated in Fig.

(next slide).

The high-pass filter kernel, is formed by changing the sign of every other sample in

low pass filter kernel.

Just as before, the low-pass filter kernel in (a) corresponds to the frequency response in (b). The high-

pass filter kernel, (c), is formed by changing the sign of every other sample in (a). As shown in (d),

this flips the frequency domain left-for-right: 0 becomes 0.5 and 0.5 becomes 0. The cutoff frequency

of the example low-pass filter is 0.15, resulting in the cutoff frequency of the high-pass filter being

0.35.

Changing the sign of every other sample is equivalent to multiplying the filter kernel by a sinusoid

with a frequency of 0.5. This has the effect of shifting the frequency domain by 0.5. Look at (b) and

imagine the negative frequencies between -0.5 and 0 that are of mirror image of the frequencies

between 0 and 0.5. The frequencies that appear in (d) are the negative frequencies from (b) shifted by

0.5.



Low pass to high pass conversion: spectral reversal (Cont.)
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Band-pass filter from low and high pass filter kernel
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Method 1: cascading of low and 

high pass filter kernel

As shown in (a), a band-pass filter can

be formed by cascading a low-pass 

filter and a high-pass filter.

Method 2: Convolution of low

and high pass filter kernel

This can be reduced to a single stage,

shown in (b). The filter kernel of the

single stage is equal to the convolution

of the low-pass and high pass filter

kernels.



Band-reject filter from low and high pass filter kernel
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Method 1: Parallel Combination of

low and high pass filter kernel

As shown in (a), a band-reject filter is

formed by the parallel combination of a

low-pass filter and a high-pass filter with

their outputs added.

Method 2: Addition of low and high

pass filter kernel

Figure (b) shows this reduced to a single

stage, with the filter kernel found by adding

the low-pass and high-pass filter kernels.
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 Impulse response of Ideal Filters

 Modification of ideal filter for implementation

 Different window functions

 Design equations of low-pass, high-pass, band-pass and band-stop filter.

 Problems on FIR filter design

Reference Book:
The Scientist and Engineer's Guide to Digital Signal Processing, By StevenW. 
Smith (2nd Edition)

Chapter-14 (Introduction to Digital Filters)
Digital Signal Processing: Fundamentals and Applications, By LiTan, Jean Jiang

Chapter-7 (Finite Impulse Response Filter Design)
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Suppose that we want to design a lowpass filter with a cutoff frequency of 𝜔𝜔𝑐𝑐, i.e. the desired frequency response 
will be:

To find the equivalent time-domain representation,
we calculate the inverse discrete-time Fourier transform:

Impulse response of Ideal low pass filter

ℎ 0 =
1

2𝜋𝜋න−𝜔𝜔𝑐𝑐

+𝜔𝜔𝑐𝑐
𝑒𝑒𝑗𝑗𝜔𝜔×0 𝑑𝑑𝜔𝜔 =

𝜔𝜔𝑐𝑐

𝜋𝜋

We are unable to calculate h[0] by above equation. h[0] is calculated by 
following formula-

ℎ 𝑛𝑛 = 𝑛𝑛𝜋𝜋
sin(𝑛𝑛𝜔𝜔𝑐𝑐) , 𝑛𝑛 ≠ 0

𝜋𝜋
𝜔𝜔𝑐𝑐 , 𝑛𝑛 = 0
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Ideal low pass filter, Is it physically realizable?

In ideal lowpass filter, all frequencies below the cutoff frequency, 𝑓𝑓𝑐𝑐 , are passed with unity amplitude, while all higher 𝑓𝑓𝑐𝑐 frequencies are

blocked. The pass band is perfectly flat, the attenuation in the stop band is infinite, and the transition between the two is infinitesimally

small. Taking the Inverse Fourier Transform of this ideal frequency response produces the ideal filter kernel (impulse response) , called

the sinc function, given by:

ℎ 𝑛𝑛 =

sin(𝑛𝑛𝜔𝜔𝑐𝑐)
𝑛𝑛𝜋𝜋 , 𝑛𝑛 ≠ 0
𝜔𝜔𝑐𝑐

260

𝜋𝜋 , 𝑛𝑛 = 0
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Ideal low pass filter, Is it physically realizable? (Cont.)

261

Convolving an input signal with this filter kernel provides a perfect low-pass filter. But the
problems are,

Noncausal: The filter kernel (impulse response) of ideal filter is noncausal (has both

positive and negative index) and hence it cannot be realized in practice.

Infinite Length: It continues to both negative and positive infinity without dropping
to zero amplitude. While this

infinite length is not a problem for mathematics, it is a show stopper for computers.

Due to the above problems the implementation of ideal filter is not possible, i.e. it cannot
be realized in practice
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Modification in Ideal low pass filter for practical realization

To get around this problem, we will make two modifications to the ideal lowpass filter kernel:

First, it is truncated to 2M+1 points, symmetrically chosen around the main lobe, where M is an even number. All samples

outside these points (-M to M) are set to zero, or simply ignored.

Second, the entire sequence is shifted to the right so that it runs from 0 to 2M. This allows the filter kernel to be represented 

using only positive indexes.

Since the modified filter kernel is only an approximation to the ideal filter kernel, it will not have an ideal frequency response.

-M M0 2M0

…
Truncation

…
Shift
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The abrupt discontinuity at the ends of the truncated sinc function excessive ripple in the passband and poor

attenuation in the stopband. Increasing the length of the filter kernel does not reduce these problems; the

discontinuity is significant no matter how long M is made. The oscillatory behavior near the band edge of the filter is

called the Gibbs Phenomenon.

263

Effect of modification in Ideal low pass filter: Gibbs 
Phenomenon
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To alleviate the presence of large oscillations in both the passband and the stopband, we should multiply a function with the filter 

kernel that contains a taper and decays towards zero gradually, instead of abruptly.

Window function to reduce Gibbs
phenomena

Figure (e) shows a smoothly tapered curve called a Blackman window. Multiplying the truncated-sinc, (c), by the Blackman window,

(e), results in the windowed-sinc filter kernel shown in (f). The idea is to reduce the abruptness of the truncated ends and thereby

improve the frequency response. Figure (g) shows this improvement. The passband is now flat, and the stopband attenuation is so good

it cannot be seen in this graph. [See Figure in next slide]

ℎ′𝑤𝑤(𝑛𝑛)
h(n) 𝒉𝒉′′(𝒏𝒏)Truncation

+shifting

𝒉𝒉′(𝒏𝒏)

Filter kernel h(n) is infinite.
Filter kernel is finite but has 

oscillations in frequency response
Oscillation in frequency 

response is reduced
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Window function to reduce Gibbs
phenomena (Cont.)
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Different window functions
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Shapes of several window
functions
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Comparison of Hamming and Blackman
Window functions• Although several different windows are available, only two windows are worth using, the Hamming window and the Blackman

window.

• Fig. (a) shows the shape of Hamming window and the Blackman window.

• Fig. (b) shows that, the hamming window has about 20% faster roll-off than the Blackman.

Hamming window:

Blackman window:
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Comparison of Hamming and BlackmanWindow 
functions (Cont.)

269

• Fig. (c) shows that the Blackman has a better stopband attenuation. The stopband attenuation for the Blackman is -74dB (-0.02%), 

while the Hamming is only -53dB (-0.2%).

• Although it cannot be seen in these graphs, the Blackman has a passband ripple of only about 0.02%, while the Hamming is

typically 0.2%.

• In general, the Blackman should be your first choice; a slow roll-off is easier to handle than poor stopband attenuation.
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Filter lengths vs roll-off of the windowed-
sinc filter
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Characteristics of physically
realizable filter

271

In any filter design problem we can specify (1) the maximum tolerable pass-band ripple, (2) the

maximum tolerable stop-band ripple,(3) the pass-band edge frequency (𝜔𝜔𝑝𝑝) , and (4) the stop-band 

edge frequency (𝜔𝜔𝑠𝑠) . Based on these specifications, we can select the filter coefficients.
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Design equations (Impulse Response) of
FIR Filter

ℎ 𝑛𝑛 =

Ω𝑐𝑐
𝜋𝜋 , 𝑛𝑛 = 0

sin 𝑛𝑛Ω𝑐𝑐

𝑛𝑛𝜋𝜋 , 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀

Lowpass Filter

High pass Filter

Following spectral inversion process we can convert the design equation of lowpass filter to high pass filter

ℎ 𝑛𝑛 = 𝜋𝜋
𝜋𝜋 − Ω𝑐𝑐 , 𝑛𝑛 = 0

sin 𝑛𝑛Ω𝑐𝑐
−

𝑛𝑛𝜋𝜋 , 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀

Ω𝑐𝑐 = 2𝜋𝜋𝑓𝑓𝑐𝑐
Where, Ω𝑐𝑐 is the angular cutoff frequency (Range: 0 to 𝜋𝜋) 
and 𝑓𝑓𝑐𝑐 is normalized cutoff frequency (Range: 0 to 0.5)
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Design equations (Impulse Response) of FIR Filter
(Cont.)

𝐿𝐿ℎ 𝑛𝑛 =

Ω𝐿𝐿 ,
𝜋𝜋

sin 𝑛𝑛Ω𝐿𝐿

𝑛𝑛𝜋𝜋

𝑛𝑛 = 0

, 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀

Band reject Filter

ℎ𝐻𝐻 𝑛𝑛 = 𝜋𝜋
𝜋𝜋 − Ω𝐻𝐻 , 𝑛𝑛 = 0

𝑛𝑛𝜋𝜋
sin 𝑛𝑛Ω𝐻𝐻

− , 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀

The impulse response of low pass filter having angular cutoff 
frequency Ω𝐿𝐿

The impulse response of high pass filter having angular cutoff 
frequency Ω𝐻𝐻

h 𝑛𝑛 =
൞

𝜋𝜋

The impulse response of band reject filter having lower angular cutoff frequency Ω𝐿𝐿and higher angular cutoff frequency Ω𝐻𝐻 is
obtained by adding ℎ𝐿𝐿 𝑛𝑛 and ℎ𝐻𝐻 𝑛𝑛 .

𝜋𝜋−Ω𝐻𝐻−Ω𝐿𝐿 , 𝑛𝑛 = 0

− sin 𝑛𝑛Ω𝐻𝐻 + sin 𝑛𝑛Ω𝐿𝐿
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𝑛𝑛𝜋𝜋 𝑛𝑛𝜋𝜋
, 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



Design equations (Impulse Response) of FIR Filter
(Cont.)Band pass Filter

ℎ 𝑛𝑛 =
1

2𝜋𝜋
1

2𝜋𝜋

−Ω𝐿𝐿 Ω𝐻𝐻

න 𝑒𝑒𝑗𝑗Ω𝑛𝑛𝑑𝑑Ω + න
−Ω𝐻𝐻 Ω𝐿𝐿

𝑒𝑒𝑗𝑗Ω𝑛𝑛𝑑𝑑Ω

Ω < Ω𝐿𝐿
Ω𝐿𝐿 < Ω < Ω𝐻𝐻

0
𝐻𝐻 Ω =

൞1
0

Ω > Ω𝐻𝐻

= −
sin Ω𝐿𝐿𝑛𝑛

𝑛𝑛𝜋𝜋 +
sin(Ω𝐻𝐻𝑛𝑛)

𝑛𝑛𝜋𝜋

ℎ 0 =
1

2𝜋𝜋

−Ω𝐿𝐿 1
2𝜋𝜋න 𝑑𝑑Ω + න

−Ω𝐻𝐻 Ω𝐿𝐿

Ω𝐻𝐻 Ω − Ω𝑑𝑑Ω = 𝐻𝐻 𝐿𝐿

𝜋𝜋

h 𝑛𝑛 =
൞

𝜋𝜋
Ω𝐻𝐻−Ω𝐿𝐿 , 𝑛𝑛 = 0

− sin 𝑛𝑛Ω𝐿𝐿 + sin 𝑛𝑛Ω𝐻𝐻
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𝑛𝑛𝜋𝜋 𝑛𝑛𝜋𝜋
, 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑀𝑀
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Ref:Digital Signal Processing (Fundamentals and Application) by LiTan
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ℎ 𝑛𝑛 =

𝜋𝜋 − 0.5𝜋𝜋
𝜋𝜋 , 𝑛𝑛 = 0

−
sin 0.5𝜋𝜋𝑛𝑛

𝑛𝑛𝜋𝜋 , 𝑓𝑓𝑜𝑜𝑟𝑟 𝑛𝑛 ≠ 0, −12 ≤ 𝑛𝑛 ≤ 12

h(0)=0.5

𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑛𝑛 = 0.5 + 0.5 cos
𝑛𝑛𝜋𝜋
12 , −12 ≤ 𝑀𝑀 ≤ 12

𝜋𝜋

sin 0.5𝜋𝜋
ℎ 1 = − = −0.3183

𝑤𝑤ℎ𝑎𝑎𝑛𝑛
0 × 𝜋𝜋

12 = 1

𝑤𝑤ℎ𝑎𝑎𝑛𝑛

0 = 0.5 + 0.5 cos

1 = 0.5 + 0.5 cos
1 × 𝜋𝜋

12
= 0.982963

ℎ𝑤𝑤 0 × 𝑤𝑤ℎ𝑎𝑎𝑛𝑛= ℎ 0 0 = 0.5

𝑤𝑤ℎ 1 = −0.312877

n h(n) 𝑤𝑤ℎ𝑎𝑎𝑛𝑛(𝑛𝑛) ℎ𝑤𝑤(𝑛𝑛)
2 0 0.933012 0
3 0.106103 0.853553 0.090565
4 0 0.749999 0
5 -0.06366 0.629408 -0.04007
6 0 0.499998 0
7 0.045473 0.370588 0.016852
8 0 0.249998 0
9 -0.03537 0.146445 -0.00518
10 0 0.066986 0
11 0.028937 0.017036 0.000493
12 0 0 0

Similarly, we can calculate other coefficients of filter After shifting the coefficients by 12 positions and
considering the symmetry property, the coefficients of
desired filter is listed below
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h(0)=0.6

𝑤𝑤𝑏𝑏𝑙𝑙𝑎𝑎𝑘𝑘 𝑛𝑛 = 0.42 + 0.5 cos
𝑛𝑛𝜋𝜋
17

2𝑛𝑛𝜋𝜋
+ 0.08cos( ) ,

17
−17 ≤ 𝑀𝑀 ≤ 17

sin 0.7125𝜋𝜋 sin 0.3125𝜋𝜋
ℎ 1 = − + = 0.014692

𝜋𝜋 𝜋𝜋

W 0 = 0.42 + 0.5 cos 0×𝜋𝜋
17

+ 0.08𝑐𝑐𝑜𝑜𝑠𝑠 2×0×𝜋𝜋
17

= 1 ℎ𝑤𝑤 0

n h(n) 𝑤𝑤(𝑛𝑛) ℎ𝑤𝑤(𝑛𝑛)
1 0.014692 0.986084 0.014488
2 0.301797 0.945357 0.285306
3 -0.02372 0.880767 -0.02089
4 -0.0924 0.796885 -0.07363
5 0 0.699423 0
6 -0.06064 0.594657 -0.03606
7 0.02348 0.488812 0.011477
8 0.071977 0.387495 0.027891
9 -0.01439 0.295226 -0.00425

Similarly, we can calculate other coefficients of filter

h 𝑛𝑛 =
൞

𝜋𝜋
𝜋𝜋−0.7125𝜋𝜋+0.3125𝜋𝜋 , 𝑛𝑛 = 0

− sin 0.7125𝜋𝜋𝑛𝑛 + sin 0.3125𝜋𝜋𝑛𝑛
𝑛𝑛𝜋𝜋 𝑛𝑛𝜋𝜋

, 𝑛𝑛 ≠ 0, −17 ≤ 𝑛𝑛 ≤ 17

𝜋𝜋
17 + 0.08𝑐𝑐𝑜𝑜𝑠𝑠 2×𝜋𝜋

17
W 1 = 0.42 + 0.5 cos

= 0.98608

= ℎ 0 × 𝑤𝑤 0 = 0.6

ℎ𝑤𝑤 1 = 0.01449

n h(n) 𝑤𝑤(𝑛𝑛) ℎ𝑤𝑤(𝑛𝑛)
10 0 0.215149 0
11 -0.01424 0.148919 -0.00212
12 -0.04495 0.096788 -0.00435
13 0.022759 0.057876 0.001317
14 0.022788 0.03055 0.000696
15 0 0.012884 0
16 0.01892 0.003111 0.0000589
17 -0.02205 0 0
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n ℎ𝑤𝑤(𝑛𝑛) 𝑏𝑏
0 0.6 𝑏𝑏17 = 0.6
1 0.014488 𝑏𝑏16 = 𝑏𝑏18 = 0.014488
2 0.285306 𝑏𝑏15 = 𝑏𝑏19 = 0.285306
3 -0.02089 𝑏𝑏14 = 𝑏𝑏20 = −0.02089
4 -0.07363 𝑏𝑏13 = 𝑏𝑏21 = −0.07363
5 0 𝑏𝑏12 = 𝑏𝑏22 = 0
6 -0.03606 𝑏𝑏11 = 𝑏𝑏23 =

−0.036062
7 0.011477 𝑏𝑏10 = 𝑏𝑏24 = 0.011477
8 0.027891 𝑏𝑏9 = 𝑏𝑏25 = 0.027891
9 -0.00425 𝑏𝑏8 = 𝑏𝑏26 = −0.00425

10 0 𝑏𝑏7 = 𝑏𝑏27 = 0
11 -0.00212 𝑏𝑏6 = 𝑏𝑏28 = −0.00212
12 -0.00435 𝑏𝑏5 = 𝑏𝑏29 = −0.00435
13 0.001317 𝑏𝑏4 = 𝑏𝑏30 = 0.001317
14 0.000696 𝑏𝑏3 = 𝑏𝑏31 = 0.000696
15 0 𝑏𝑏2 = 𝑏𝑏32 = 0
16 0.0000589 𝑏𝑏1 = 𝑏𝑏33 = 0.0000589
17 0 𝑏𝑏0 = 𝑏𝑏34 = 0

After shifting the coefficients by 17 positions and considering the symmetry property, the coefficients of desired filter is
listed below
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 IIR Filter.

 Design of IIR Filter from analog filter: BLT Method.

 Some simple and intuitive IIR Filters: Leaky integrator, Resonator, DC removal, Hum
removal.

References:
Digital Signal Processing: Fundamentals and Applications, By LiTan, Jean Jiang

Chapter-8 (Infinite Impulse Response Filter Design)
Lecture slides of Online course on coursera.org (Digital Signal Processing by École 
Polytechnique Fédérale de Lausanne)
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 Digital filters that has impulse response of infinite length is known as IIR filter.Their impulse responses are composed of 
decaying exponentials.

 Such filter is also called recursive filter, because the IIR filter output y(n) depends not only on the current input x(n) and 
past inputs x(n-1), …, bust also on the past output(s) y(n-1), … (recursive terms). Its transfer function is a ratio of the 
numerator polynomial over the denominator, and its impulse response has an infinite number of terms.

 Since the transfer function has the denominator polynomial, the pole(s) of a designed IIR filter must be inside the unit
circle on the z-plane to ensure its stability.

 Compared with the finite impulse response (FIR) filter, the IIR filter offers a much smaller filter size. Hence, the filter
operation requires a fewer number of computations, but the linear phase is not easily obtained. The IIR filter is thus
preferred when a small filter size is called but the application does not require a linear phase.
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Design of IIR Filters from
Analog Filters

This is the transfer function of low-pass 
prototype with a cutoff frequency of 1 
radian per second
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Analog filter design is a mature and well-developed field, so it is not surprising that we begin the design of a digital filter in
the analog domain and then convert the design into the digital domain. Following are the methods for converting an analog
filter into a digital filter:

 IIR filter design by Approximation of Derivatives.
 IIR Filter Design by Impulse Invariance.
 IIR Filter Design by the BilinearTransformation.

Analog filter using lowpass prototype transformation

Low pass prototype
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IIR Filter Design by the Bilinear Transformation
BLT and frequency Warping

The area under the curve can be determined using the following integration:

Laplace transform of above equation and Laplace transfer function:

… … … (1)

Now area under curve by numerical integration method: 

z-transform of above equation and z-transfer function:

… … … (2)

Comparing equation (1) and (2), we can write

known as bilinear
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This equation is
transformation.

The BLT method is a mapping or transformation of points from the s-plane to the z-plane.



The general mapping properties are summarized as following:
 The left-half s-plane is mapped onto the inside of the unit circle

of the z-plane.
 The right-half s-plane is mapped onto the outside of the unit

circle of the z-plane.
 The positive 𝑗𝑗𝜔𝜔 axis portion in the s-plane is mapped onto the

positive half circle (the dashed-line arrow in Figure) on the unit
circle, while the negative 𝑗𝑗𝜔𝜔 axis is mapped onto the negative
half circle (the dotted-line arrow in Figure) on the unit circle.

This equation explores the relation between the analog frequency on the
𝑗𝑗𝜔𝜔 axis and the corresponding digital frequency 𝜔𝜔𝑑𝑑 on the unit circle.
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We can find the difference equation from H(z):
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• Smoothing effect is proportional to M.
• Number of mathematical operations and required storage is also 

proportional to M.

 Leaky integrator is a very simple and computationally efficient filter which is used to remove high
frequency components
(e.g. noise).

 It is useful in audio, communication and control systems.

Construction of Leaky integrator

Leaky integrator is developed by modifying the moving average filter. The concept of moving
average filter is very simple,
replacing each sample by local average. For instance a 2-point moving average filter do the
following operation:

General mathematical expression of M-point moving

average filter is: Moving average filter over M point:

Some simple and useful IIR Filters: Leaky integrator, Resonator, DC

removal, Hum Removal Simple IIR lowpass filter: Leaky integrator
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Construction of Leaky integrator (Cont.)

Moving average filter over M-1 points, delayed by one.

Recall the M-point MA filter:

Delaying the output of MA filter by 1 position, we get

Modifying the equation of above MA filter over M-1 point

Summation of M-discrete samples can be expressed as
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Construction of Leaky integrator (Cont.)

When M is large, 𝑦𝑦𝑀𝑀−1 𝑛𝑛 ≈ 𝑦𝑦𝑀𝑀 𝑛𝑛 (𝑎𝑎𝑛𝑛𝑑𝑑 𝜆𝜆 ≈ 1).The above equation can be written as

This is the expression of leaky integrator.

The transfer function of leaky integrator.

Frequency response of leaky 
integrator for 𝜆𝜆 = 0.98

300

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV



Impulse Response of Leaky Integrator
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Leaky Integrator:Why the name



 A resonator is a narrow bandpass filter.
 User to detect the presence of a sinusoid of a given frequency.
 Useful in communication systems and telephony (DTMF)

Resonator

Frequency response of resonator for:

Idea!
Shift the passband of the Leaky Integrator
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DC removal

 DC offset of a signal carries no information but is troublesome in signal analysis and
responsible to waster energy in circuit.

 A DC-balanced signal has zero sum:

 Its DTFT value at zero is zero.

 we want to remove the DC bias from a non zero-centered signal.

 We want kill the frequency component at 𝜔𝜔 = 0.

i.e. there is no Direct current component. lim
𝑛𝑛→∞

𝑁𝑁

 𝑥𝑥[𝑛𝑛] = 0
𝑛𝑛=−𝑁𝑁

The way to kill the frequency at 𝜔𝜔 = 0, is simply to place a zero at z=1 in 
the argand diagram.The transfer function will be:

and The system is non-recursive.

From the frequency response, it is clear that the system remove DC offset. However, 

it also introduce a very big attenuation over all most the entire frequency range.
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DC removal, improved (DC notch)
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We can push up z-transform near zero by putting a
pole in the vicinity of the zero. Therefore, we
paced a pole close to 1 and inside the unit circle.
Thus, we get the following transfer function which
is the combination of notch in zero and a leaky
integrator.



 Similar to DC removal but we want to remove a specific non zero frequency.

Very useful for musicians: amplifiers for electric guitars pick up the hum from the electric
mains (50 Hz in Europe and 60 Hz in North America)

 We need to tune the hum removal according to country.

Hum Removal (Notch Filter)

𝐻𝐻 𝑧𝑧 =
1 − 𝜆𝜆𝑒𝑒𝑗𝑗𝜔𝜔0 𝑧𝑧−1 ((1 − 𝜆𝜆𝑒𝑒−𝑗𝑗𝜔𝜔0 𝑧𝑧−1))

Idea!
Shift the passband of the DC Notch

=
−11 − 2𝑧𝑧 (

1 − 𝑒𝑒−𝑗𝑗𝜔𝜔0 𝑧𝑧−1 − 𝑒𝑒𝑗𝑗𝜔𝜔0 𝑧𝑧−1 + 𝑧𝑧−2
=

1 − 𝜆𝜆𝑒𝑒−𝑗𝑗𝜔𝜔0 𝑧𝑧−1 − 𝜆𝜆𝑒𝑒𝑗𝑗𝜔𝜔0 𝑧𝑧−1 + 𝜆𝜆2𝑧𝑧−2

𝑒𝑒𝑗𝑗𝜔𝜔0 + 𝑒𝑒−𝑗𝑗𝜔𝜔0

2 ) + 𝑧𝑧−2

1 − 2𝜆𝜆𝑧𝑧−1( 𝑒𝑒𝑗𝑗𝜔𝜔0 + 𝑒𝑒−𝑗𝑗𝜔𝜔0

2 ) + 𝜆𝜆 𝑧𝑧2 −2

1 − 2 cos 𝜔𝜔0 𝑧𝑧−1 + 𝑧𝑧−2
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= 1 − 2𝜆𝜆 cos 𝜔𝜔0 𝑧𝑧−1 + 𝜆𝜆2𝑧𝑧−2

(1 − 𝑒𝑒𝑗𝑗𝜔𝜔0 𝑧𝑧−1)(1 − 𝑒𝑒−𝑗𝑗𝜔𝜔0 𝑧𝑧−1)



1 − 2 cos 𝜔𝜔0 𝑧𝑧−1 + 𝑧𝑧−2
𝐻𝐻(𝑧𝑧) = 1 − 2𝜆𝜆 cos 𝜔𝜔0 𝑧𝑧−1 + 𝜆𝜆2𝑧𝑧−2

Hum Removal
(Cont.)
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